Skip to main content

An Exponentially Growing Nubot System Without State Changes

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11493))

Abstract

Self-assembly is the process in which simple units assemble into complex structures without explicit external control. The nubot model was proposed to describe self-assembly systems involving active components capable of changing internal states and moving relative to each other. A major difference between the nubot model and many previous self-assembly models is its ability to perform exponential growth. Several previous works focused on restricting the nubot model while preserving exponential growth. In this work, we construct a nubot system which performs exponential growth without any state changes. All nubots stay in fixed internal states throughout the growth process. This construction not only improves the previous optimal construction, but also demonstrates new trade-offs between different types of rules in the nubot system.

Research supported in part by MOST grant number 107-2221-E-002-031-MY3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size for self-assembled squares. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 740–748 (2001)

    Google Scholar 

  2. Barish, R.D., Rothemund, P.W.K., Winfree, E.: Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett. 5(12), 2586–2592 (2005)

    Article  Google Scholar 

  3. Bishop, J., Klavins, E.: An improved autonomous DNA nanomotor. Nano Lett. 7(9), 2574–2577 (2007)

    Article  Google Scholar 

  4. Chen, H.-L., Doty, D., Holden, D., Thachuk, C., Woods, D., Yang, C.-T.: Fast algorithmic self-assembly of simple shapes using random agitation. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 20–36. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4_2

    Chapter  Google Scholar 

  5. Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Error correction for DNA self-assembly: preventing facet nucleation. Nano Lett. 7, 2913–2919 (2007)

    Article  Google Scholar 

  6. Cheng, Q., Goel, A., Moisset, P.: Optimal self-assembly of counters at temperature two. In: Proceedings of the 1st Conference on Foundations of Nanoscience: Self-Assembled Architectures and Devices, pp. 62–75 (2004)

    Google Scholar 

  7. Chin, Y.-R., Tsai, J.-T., Chen, H.-L.: A minimal requirement for self-assembly of lines in polylogarithmic time. In: Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 139–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66799-7_10

    Chapter  Google Scholar 

  8. Dietz, H., Douglas, S., Shih, W.: Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009)

    Article  Google Scholar 

  9. Ding, B., Seeman, N.: Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 384, 1583–1585 (2006)

    Article  Google Scholar 

  10. Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proc. Nat. Acad. Sci. 101(43), 15275–15278 (2004)

    Article  Google Scholar 

  11. Doty, D.: Randomized self-assembly for exact shapes. SIAM J. Comput. 39(8), 3521–3552 (2010)

    Article  MathSciNet  Google Scholar 

  12. Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (2012)

    Google Scholar 

  13. Douglas, S., Dietz, H., Liedl, T., Hogberg, B., Graf, F., Shih, W.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)

    Article  Google Scholar 

  14. Green, S., Bath, J., Turberfield, A.: Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys. Rev. Lett. 101(23), 238101 (2008)

    Article  Google Scholar 

  15. Kao, M.-Y., Schweller, R.: Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 571–580 (2006)

    Google Scholar 

  16. Lagoudakis, M., LaBean, T.: 2D DNA self-assembly for satisfiability. In: Proceedings of the 5th DIMACS Workshop on DNA Based Computers in DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 54, pp. 141–154 (1999)

    Google Scholar 

  17. Pei, R., Taylor, S., Stojanovic, M.: Coupling computing, movement, and drug release (2007)

    Google Scholar 

  18. Reif, J.H., Sahu, S.: Autonomous programmable DNA nanorobotic devices using DNAzymes. In: Proceedings of the Thirteenth International Meeting on DNA Based Computers, Memphis, TN, June 2007

    Google Scholar 

  19. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 459–468 (2000)

    Google Scholar 

  20. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  21. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLOS Biol. 2, 424–436 (2004)

    Article  Google Scholar 

  22. Seelig, G., Soloveichik, D., Zhang, D., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)

    Article  Google Scholar 

  23. Sherman, W.B., Seeman, N.C.: A precisely controlled DNA bipedal walking device. Nano Lett. 4, 1203–1207 (2004)

    Article  Google Scholar 

  24. Shih, W.M., Quispe, J.D., Joyce, G.F.A.: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427(6975), 618–621 (2004)

    Article  Google Scholar 

  25. Shin, J.-S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)

    Article  Google Scholar 

  26. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Comput. 36, 1544–1569 (2007)

    Article  MathSciNet  Google Scholar 

  27. Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: A DNAzyme that walks processively and autonomously along a one-dimensional track. Angewandte Chemie 44, 4355–4358 (2005)

    Article  Google Scholar 

  28. Venkataraman, S., Dirks, R.M., Rothemund, P.W.K., Winfree, E., Pierce, N.A.: An autonomous polymerization motor powered by DNA hybridization. Nature Nanotechnol. 2, 490–494 (2007)

    Article  Google Scholar 

  29. Win, M.N., Smolke, C.D.: Higher-order cellular information processing with synthetic RNA devices. Science 322(5900), 456 (2008)

    Article  Google Scholar 

  30. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute of Technology, Pasadena (1998)

    Google Scholar 

  31. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  32. Woods, D., Chen, H.-L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS 2013, pp. 353–354 (2013)

    Google Scholar 

  33. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008)

    Article  Google Scholar 

  34. Yin, P., Turberfield, A.J., Reif, J.H.: Designs of autonomous unidirectional walking DNA devices. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 410–425. Springer, Heidelberg (2005). https://doi.org/10.1007/11493785_36

    Chapter  Google Scholar 

  35. Yurke, B., Turberfield, A., Mills Jr., A., Simmel, F., Neumann, J.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)

    Article  Google Scholar 

  36. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)

    Article  Google Scholar 

  37. Zhang, Y., Seeman, N.: Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116(5), 1661 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Lin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, CY., Chen, HL. (2019). An Exponentially Growing Nubot System Without State Changes. In: McQuillan, I., Seki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2019. Lecture Notes in Computer Science(), vol 11493. Springer, Cham. https://doi.org/10.1007/978-3-030-19311-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19311-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19310-2

  • Online ISBN: 978-3-030-19311-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics