Abstract
The interconnection pattern between the tubes of a tube-fin heat exchanger, also referred to as its circuitry, has a significant impact on its performance. We can improve the performance of a heat exchanger by identifying optimized circuitry designs. This task is difficult because the number of possible circuitries is very large, and because the dependence of the heat exchanger performance on the input (i.e., a given circuitry) is highly discontinuous and nonlinear. In this paper, we propose a novel decision diagram formulation and present computational results using the mixed integer programming solver CPLEX. The results show that the proposed approach has a favorable scaling with respect to number of tubes in the heat exchanger size and produces configurations with 9% higher heat capacity, on average, than the baseline configuration.
Keywords
- Optimization
- Decision diagram
- Heat exchanger design
- Refrigerant circuitry
- Heat capacity
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Ploskas, N., Laughman, C., Raghunathan, A.U., Sahinidis, N.V.: Optimization of circuitry arrangements for heat exchangers using derivative-free optimization. Chem. Eng. Res. Des. 131, 16–28 (2018). https://doi.org/10.1016/j.cherd.2017.05.015
Hewitt, G.F., Shires, G.L., Bott, T.R.: Process Heat Transfer, vol. 113. CRC Press, Boca Raton (1994)
Fax, D.H., Mills, R.R.: Generalized optimal heat exchanger design. ASME Trans. 79, 653–661 (1957)
Hedderich, C.P., Kelleher, M.D., Vanderplaats, G.N.: Design and optimization of air-cooled heat exchangers. J. Heat Transfer 104, 683–690 (1982)
Liang, S.Y., Wong, T.N., Nathan, G.K.: Study on refrigerant circuitry of condenser coils with exergy destruction analysis. Appl. Therm. Eng. 20, 559–577 (2000). https://doi.org/10.1016/s1359-4311(99)00043-5
Wang, C.C., Jang, J.Y., Lai, C.C., Chang, Y.J.: Effect of circuit arrangement on the performance of air-cooled condensers. Int. J. Refrig. 22, 275–282 (1999). https://doi.org/10.1016/s0140-7007(98)00065-6
Yun, J.Y., Lee, K.S.: Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit fins. Int. J. Heat Mass Transf. 43, 2529–2539 (2000). https://doi.org/10.1016/s0017-9310(99)00342-7
Liang, S.Y., Wong, T.N., Nathan, G.K.: Numerical and experimental studies of refrigerant circuitry of evaporator coils. Int. J. Refrig. 24, 823–833 (2001). https://doi.org/10.1016/s0140-7007(00)00050-5
Matos, R.S., Laursen, T.A., Vargas, J.V.C., Bejan, A.: Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection. Int. J. Therm. Sci. 43, 477–487 (2004). https://doi.org/10.1016/j.ijthermalsci.2003.10.003
Domanski, P.A., Yashar, D., Kim, M.: Performance of a finned-tube evaporator optimized for different refrigerants and its effect on system efficiency. Int. J. Refrig. 28, 820–827 (2005). https://doi.org/10.1016/j.ijrefrig.2005.02.003
Domanski, P.A., Yashar, D., Kaufman, K.A., Michalski, R.S.: An optimized design of finned-tube evaporators using the learnable evolution model. HVAC&R Res. 10, 201–211 (2004). https://doi.org/10.1080/10789669.2004.10391099
Domanski, P.A., Yashar, D.: Optimization of finned-tube condensers using an intelligent system. Int. J. Refrig. 30, 482–488 (2007). https://doi.org/10.1016/j.ijrefrig.2006.08.013
Wu, Z., Ding, G., Wang, K., Fukaya, M.: Application of a genetic algorithm to optimize the refrigerant circuit of fin-and-tube heat exchangers for maximum heat transfer or shortest tube. Int. J. Therm. Sci. 47, 985–997 (2008). https://doi.org/10.1016/j.ijthermalsci.2007.08.005
Bendaoud, A.L., Ouzzane, M., Aidoun, Z., Galanis, N.: A new modeling procedure for circuit design and performance prediction of evaporator coils using CO2 as refrigerant. Appl. Energy 87, 2974–2983 (2010). https://doi.org/10.1016/j.apenergy.2010.04.015
Lee, W.J., Kim, H.J., Jeong, J.H.: Method for determining the optimum number of circuits for a fin-tube condenser in a heat pump. Int. J. Heat Mass Transf. 98, 462–471 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.094
Yashar, D.A., Lee, S., Domanski, P.A.: Rooftop air-conditioning unit performance improvement using refrigerant circuitry optimization. Appl. Therm. Eng. 83, 81–87 (2015). https://doi.org/10.1016/j.applthermaleng.2015.03.012
Cen, J., Hu, J., Jiang, F.: An automatic refrigerant circuit generation method for finned-tube heat exchangers. Can. J. Chem. Eng. (2018). https://doi.org/10.1002/cjce.23150
Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11
Behle, M.: Binary decision diagrams and integer programming. Ph.D. thesis, Saarland University (2007)
Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016). https://doi.org/10.1287/ijoc.2015.0648
Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, 1st edn. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9
Bergman, D., Cire, A.A.: Discrete nonlinear optimization by state-space decompositions. Manage. Sci. 64(10), 4700–4720 (2017). https://doi.org/10.1287/mnsc.2017.2849
Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems. Oper. Res. 61(6), 1411–1428 (2013). https://doi.org/10.1287/opre.2013.1221
Davarnia, D., van Hoeve, W.J.: Outer approximation for integer nonlinear programs via decision diagrams (2018). http://www.optimization-online.org/DB_HTML/2018/03/6512.html
Haus, U.U., Michini, C., Laumanns, M.: Scenario aggregation using binary decision diagrams for stochastic programs with endogenous uncertainty. CoRR abs/1701.04055, https://arxiv.org/abs/1701.04055 (2017)
Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 94–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-3_7
Lozano, L., Smith, J.C.: A binary decision diagram based algorithm for solving a class of binary two-stage stochastic programs. Math. Program. (2018). https://doi.org/10.1007/s10107-018-1315-z
Morrison, D.R., Sewell, E.C., Jacobson, S.H.: Solving the pricing problem in a branch-and-price algorithm for graph coloring using zero-suppressed binary decision diagrams. INFORMS J. Comput. 28(1), 67–82 (2016). https://doi.org/10.1287/ijoc.2015.0667
Raghunathan, A.U., Bergman, D., Hooker, J.N., Serra, T., Kobori, S.: Seamless multimodal transportation scheduling. CoRR abs/1807.09676 https://arxiv.org/abs/1807.09676 (2018)
Serra, T., Hooker, J.N.: Compact representation of near-optimal integer programming solutions (2017). http://www.optimization-online.org/DB_HTML/2017/09/6234.html
Tjandraatmadja C., van Hoeve, W.J.: Target cuts from relaxed decision diagrams. INFORMS J. Comput. (2018, to appear)
Jiang, H., Aute, V., Radermacher, R.: CoilDesigner: a general-purpose simulation and design tool for air-to-refrigerant heat exchangers. Int. J. Refrig. 29, 601–610 (2006). https://doi.org/10.1016/j.ijrefrig.2005.09.019
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ploskas, N., Laughman, C., Raghunathan, A.U., Sahinidis, N.V. (2019). Heat Exchanger Circuitry Design by Decision Diagrams. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-19212-9_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19211-2
Online ISBN: 978-3-030-19212-9
eBook Packages: Computer ScienceComputer Science (R0)