Advertisement

Investigating Constraint Programming for Real World Industrial Test Laboratory Scheduling

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11494)

Abstract

In this paper we deal with a complex real world scheduling problem closely related to the well-known Resource-Constrained Project Scheduling Problem (RCPSP). The problem concerns industrial test laboratories in which a large number of tests has to be performed by qualified personnel using specialised equipment, while respecting deadlines and other constraints. We present different constraint programming models and search strategies for this problem. Our approaches are evaluated using CP solvers and a MIP solver on a set of generated instances of different sizes. With our best approach we could find feasible and several optimal solutions for instances that are generated based on real-world test laboratory problems.

Notes

Acknowledgments

The financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development is gratefully acknowledged. We would also like to thank the anonymous reviewers for their feedback, in particular regarding CP-modelling.

References

  1. 1.
    Bartels, J.H., Zimmermann, J.: Scheduling tests in automotive R&D projects. Eur. J. Oper. Res. 193(3), 805–819 (2009).  https://doi.org/10.1016/j.ejor.2007.11.010CrossRefzbMATHGoogle Scholar
  2. 2.
    Bellenguez, O., Néron, E.: Lower bounds for the multi-skill project scheduling problem with hierarchical levels of skills. In: Burke, E., Trick, M. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 229–243. Springer, Heidelberg (2005).  https://doi.org/10.1007/11593577_14CrossRefGoogle Scholar
  3. 3.
    Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112(1), 3–41 (1999).  https://doi.org/10.1016/S0377-2217(98)00204-5CrossRefzbMATHGoogle Scholar
  4. 4.
    Chu, G.: Improving combinatorial optimization. Ph.D. thesis, University of Melbourne, Australia (2011). http://hdl.handle.net/11343/36679
  5. 5.
    Dauzère-Pérès, S., Roux, W., Lasserre, J.: Multi-resource shop scheduling with resource flexibility. Eur. J. Oper. Res. 107(2), 289–305 (1998).  https://doi.org/10.1016/S0377-2217(97)00341-XCrossRefzbMATHGoogle Scholar
  6. 6.
    Drezet, L.E., Billaut, J.C.: A project scheduling problem with labour constraints and time-dependent activities requirements. Int. J. Prod. Econ. 112(1), 217–225 (2008).  https://doi.org/10.1016/j.ijpe.2006.08.021. Special Section on Recent Developments in the Design, Control, Planning and Scheduling of Productive SystemsCrossRefGoogle Scholar
  7. 7.
    Elmaghraby, S.E.: Activity Networks: Project Planning and Control by Network Models. Wiley, New York (1977)zbMATHGoogle Scholar
  8. 8.
    Feydy, T., Goldwaser, A., Schutt, A., Stuckey, P.J., Young, K.D.: Priority search with MiniZinc. In: ModRef 2017: The Sixteenth International Workshop on Constraint Modelling and Reformulation at CP 2017 (2017)Google Scholar
  9. 9.
    Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2010).  https://doi.org/10.1016/j.ejor.2009.11.005MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    IBM, CPLEX: 12.8.0 IBM ILOG CPLEX optimization studio CP optimizer user’s manual (2017). https://www.ibm.com/analytics/cplex-cp-optimizer
  11. 11.
    IBM, CPLEX: 12.8.0 IBM ILOG CPLEX optimization studio CPLEX user’s manual (2017). https://www.ibm.com/analytics/cplex-optimizer
  12. 12.
    Mika, M., Waligóra, G., Wȩglarz, J.: Overview and state of the art. In: Schwindt, C., Zimmermann, J. (eds.) Handbook on Project Management and Scheduling. International Handbooks on Information Systems, vol. 1, pp. 445–490. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-05443-8_21CrossRefGoogle Scholar
  13. 13.
    Mischek, F., Musliu, N.: A local search framework for industrial test laboratory scheduling. In: Proceedings of the 12th International Conference on the Practice and Theory of Automated Timetabling (PATAT-2018), Vienna, Austria, 28–31 August 2018, pp. 465–467 (2018)Google Scholar
  14. 14.
    Mischek, F., Musliu, N.: The test laboratory scheduling problem. Technical report, Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and Scheduling, TU Wien, CD-TR 2018/1 (2018)Google Scholar
  15. 15.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74970-7_38CrossRefGoogle Scholar
  16. 16.
    Nudtasomboon, N., Randhawa, S.U.: Resource-constrained project scheduling with renewable and non-renewable resources and time-resource tradeoffs. Comput. Ind. Eng. 32(1), 227–242 (1997).  https://doi.org/10.1016/S0360-8352(96)00212-4CrossRefGoogle Scholar
  17. 17.
    Pritsker, A.A.B., Waiters, L.J., Wolfe, P.M.: Multiproject scheduling with limited resources: a zero-one programming approach. Manage. Sci. 16(1), 93–108 (1969).  https://doi.org/10.1287/mnsc.16.1.93CrossRefGoogle Scholar
  18. 18.
    Salewski, F., Schirmer, A., Drexl, A.: Project scheduling under resource and mode identity constraints: model, complexity, methods, and application. Eur. J. Oper. Res. 102(1), 88–110 (1997).  https://doi.org/10.1016/S0377-2217(96)00219-6CrossRefzbMATHGoogle Scholar
  19. 19.
    Schulte, C., Lagerkvist, M., Tack, G.: Gecode 6.10 reference documentation (2018). https://www.gecode.org
  20. 20.
    Schwindt, C., Trautmann, N.: Batch scheduling in process industries: an application of resource-constrained project scheduling. OR-Spektrum 22(4), 501–524 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Szeredi, R., Schutt, A.: Modelling and solving multi-mode resource-constrained project scheduling. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 483–492. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44953-1_31CrossRefGoogle Scholar
  22. 22.
    Wȩglarz, J., Józefowska, J., Mika, M., Waligóra, G.: Project scheduling with finite or infinite number of activity processing modes–a survey. Eur. J. Oper. Re. 208(3), 177–205 (2011).  https://doi.org/10.1016/j.ejor.2010.03.037MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Young, K.D., Feydy, T., Schutt, A.: Constraint programming applied to the multi-skill project scheduling problem. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 308–317. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66158-2_20CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and SchedulingDBAI, TU WienViennaAustria

Personalised recommendations