Skip to main content

Piezo-Active Composites: Classification and Effective Physical Properties

  • Chapter
  • First Online:
Piezo-Particulate Composites

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 283))

  • 512 Accesses

Abstract

Piezo-active composites are regarded as an important group of piezoelectric materials that belong to heterogeneous dielectrics whose physical properties and related parameters depend on many factors. Among the variety of criteria for the classification of piezo-active composites, their microgeometry and connectivity play an important role. Knowledge of the connectivity pattern enables us to carry out a prediction of the effective physical properties and related parameters in terms of micromechanical methods. Piezo-active composites play a key role among modern functional materials due to the considerable electromechanical coupling, piezoelectric activity, sensitivity and anisotropy, and figures of merit. This is achieved in the presence of highly effective ferroelectric components such as poled ferroelectric ceramics and domain-engineered relaxor-ferroelectric single crystals. The properties of the composites are regarded as effective properties in accordance with features of the microstructure, domain structure, arrangement of components and connectivity. The remarkable piezoelectric properties and related parameters of the composites based on ferroelectrics stimulate the creation of novel highly effective materials and are to be taken into account for potential transducer, hydroacoustic, energy-harvesting and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.E. Newnham, Molecular mechanisms in smart materials. Mater. Res. Soc. Bull. 22(5), 20–34 (1997)

    Article  CAS  Google Scholar 

  2. V.Yu. Topolov, C.R. Bowen, Electromechanical Properties in Composites Based on Ferroelectrics (Springer, London, 2009)

    Google Scholar 

  3. L.P. Khoroshun, B.P. Maslov, P.V. Leshchenko, Prediction of Effective Properties of Piezo-Active Composite Materials (Naukova Dumka, Kiev, 1989) (in Russian)

    Google Scholar 

  4. R.M. Chistensen, Mechanics of Composite Materials (Wiley, New York, 1979)

    Google Scholar 

  5. R.E. Newnham, Nonmechanical properties of composites, in Concise Encyclopedia of Composite Materials, ed. by A. Kelly, R.W. Cahn, M.B. Bever (Elsevier, Oxford, 1994), pp. 214–220

    Google Scholar 

  6. R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13, 525–536 (1978)

    Article  CAS  Google Scholar 

  7. V.Yu. Topolov, P. Bisegna, C.R. Bowen, Piezo-active composites. Orientation Effects and Anisotropy Factors (Springer, Berlin Heidelberg, 2014)

    Book  Google Scholar 

  8. C.R. Bowen, V.Yu. Topolov, H.A. Kim, Modern Piezoelectric Energy-Harvesting Materials (Springer International Publishing Switzerland, 2016)

    Google Scholar 

  9. E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746–775 (2005)

    Article  Google Scholar 

  10. C.R. Bowen, V.Yu. Topolov, A.N. Isaeva, P. Bisegna, Advanced composites based on relaxor-ferroelectric single crystals: from electromechanical coupling to energy-harvesting applications. CrystEngComm 18, 5986–6001 (2016)

    Article  CAS  Google Scholar 

  11. M. Lines, A. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

    Google Scholar 

  12. I.S. Zheludev, Physics of Crystalline Dielectrics. V. 2: Electrical Properties (Plenum, New York, 1971)

    Google Scholar 

  13. T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, Oxford New York Toronto, 1990)

    Google Scholar 

  14. J. Tichȳ, J. Erhart, E. Kittinger, J. Přivratská, Fundamentals of Piezoelectric Sensories. Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials (Springer, Berlin, Heidelberg, 2010)

    Google Scholar 

  15. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London New York, 1971)

    Google Scholar 

  16. C.H. Sherman, J.L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2007)

    Book  Google Scholar 

  17. R. Zhang, B. Jiang, W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J. Appl. Phys. 90, 3471–3475 (2001)

    Article  CAS  Google Scholar 

  18. R. Zhang, B. Jiang, W. Cao, A. Amin, Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 domain engineered single crystal. J. Mater. Sci. Lett. 21, 1877–1879 (2002)

    Article  CAS  Google Scholar 

  19. J.E. Smay, B. Tuttle, J. Cesarano III, Robocasting of three-dimensional piezoelectric structures, in Piezoelectric and Acoustic Materials for Transducer Applications, ed. by A. Safari, E.K. Akdoğan (Springer, New York, 2008), pp. 305–318

    Chapter  Google Scholar 

  20. F. Wang, C. He, Y. Tang, X. Zhao, H. Luo, Single-crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 /epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater. Chem. Phys. 105, 273–277 (2007)

    Article  CAS  Google Scholar 

  21. V.Yu. Topolov, S.V. Glushanin, Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. J. Phys. D Appl. Phys. 35, 2008–2014 (2002)

    Article  CAS  Google Scholar 

  22. F. Levassort, M. Lethiecq, D. Certon, F. Patat, A matrix method for modeling electroelastic moduli of 0–3 piezo-composites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 445–452 (1997)

    Article  CAS  Google Scholar 

  23. M.L. Dunn, M. Taya, An analysis of piezoelectric composite materials containing ellipsoidal inhomogeneities. Proc. R. Soc. (Lond.), Pt A 443, 265–287 (1993)

    Google Scholar 

  24. J.H. Huang, S. Yu, Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4, 1169–1182 (1994)

    Article  Google Scholar 

  25. J. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. (Lond.), Pt A 241, 376–396 (1957)

    Google Scholar 

  26. J. Eshelby, The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. (Lond.), Pt A 252, 561–569 (1959)

    Google Scholar 

  27. C.-W. Nan, Effective-medium theory of piezoelectric composites. J. Appl. Phys. 76, 1155–1163 (1994)

    Article  Google Scholar 

  28. N. Fakri, L. Azrar, L. El Bakkali, Electroelastic behavior modeling of piezoelectric composite materials containing spatially oriented reinforcements. Int. J. Solids Struct. 40, 361–384 (2003)

    Article  Google Scholar 

  29. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  30. J.H. Huang, W.-S. Kuo, Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44, 4889–4898 (1996)

    Article  CAS  Google Scholar 

  31. V.Yu. Topolov, C.R. Bowen, P. Bisegna, S.E. Filippov, The piezoelectric performance and anisotropy factors of modern three-component composites, in Nano- and Piezoelectric Technologies, Materials and Devices, ed. by I.A. Parinov (Nova Science Publishers, New York, 2013), pp. 51–78

    Google Scholar 

  32. V.Yu. Topolov, P. Bisegna, C.R. Bowen, Analysis of the piezoelectric performance of modern 0–3-type composites based on relaxor-ferroelectric single crystals. Ferroelectrics 413, 176–191 (2011)

    Article  CAS  Google Scholar 

  33. H. Khanbareh, Expanding the functionality of piezo-particulate composites. Proefschrift ter verkrijging van der grad van doctor aan de Technische Universiteit Delft (Delft, 2016)

    Google Scholar 

  34. Yu.V. Sokolkin, A.A. Pan’kov, Electroelasticity of Piezo-Composites with Irregular Structures (Fizmatlit, Moscow, 2003) (in Russian)

    Google Scholar 

  35. K. Uchino, T. Ishii, Energy flow analysis in piezoelectric energy harvesting systems. Ferroelectrics 400, 305–320 (2010)

    Article  CAS  Google Scholar 

  36. V.Yu. Topolov, C.R. Bowen, P. Bisegna, Piezo-Active Composites. Microgeometry—Sensitivity Relations. (Springer International Publishing, Cham, 2018)

    Google Scholar 

  37. C.R. Bowen, V.Yu. Topolov, Y. Zhang, A.A. Panich, 1–3-type composites based on ferroelectrics: electromechanical coupling, figures of merit, and piezotechnical energy-harvesting applications. Energy Technology 6, 813–828 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamideh Khanbareh .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khanbareh, H., Topolov, V.Y., Bowen, C.R. (2019). Piezo-Active Composites: Classification and Effective Physical Properties. In: Piezo-Particulate Composites. Springer Series in Materials Science, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-030-19204-4_1

Download citation

Publish with us

Policies and ethics