Quark-Hadron Duality

  • Matthew John KirkEmail author
Part of the Springer Theses book series (Springer Theses)


In Chap.  1 we discussed how flavour physics is an ideal testing ground for searches for new physics, as there are many observables which are highly suppressed in the SM but could easily be enhanced by new physics, as well as many observables for which a high experimental precision is available—meson mixing observables satisfy both these criteria. In order to make use of this fact, we must be sure that hadronic uncertainties are under control in our theoretical calculations, as otherwise we cannot tell for certain if we are seeing anything new.


  1. 1.
    Poggio EC, Quinn HR, Weinberg S (1976) Smearing the quark model. Phys Rev D 13:1958. Scholar
  2. 2.
    Bloom ED, Gilman FJ (1970) Scaling, duality, and the behavior of resonances in inelastic electron-proton scattering. Phys Rev Lett 25:1140. Scholar
  3. 3.
    Bloom ED, Gilman FJ (1971) Scaling and the behavior of nucleon resonances in inelastic electron-nucleon scattering. Phys Rev D 4:2901. Scholar
  4. 4.
    Shifman MA (2001) Quark hadron duality. In: At the frontier of particle physics. Handbook of QCD, vol 1–3 (Singapore), pp 1447–1494, World Scientific., arXiv:hep-ph/0009131CrossRefGoogle Scholar
  5. 5.
    Bigi IIY, Uraltsev N (2001) A Vademecum on quark hadron duality. Int J Mod Phys A 16:5201–5248., arXiv:hep-ph/0106346ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Lenz AJ (2011) A simple relation for \(B_s\) mixing. Phys Rev D 84:031501., arXiv:1106.3200
  7. 7.
    Grinstein B (2001) Global duality in heavy flavor decays in the ’t Hooft model. Phys Rev D 64:094004., arXiv:hep-ph/0106205
  8. 8.
    Grinstein B (2001) Non-local duality in B decays in the t’Hooft model. PoS HEP 099Google Scholar
  9. 9.
    Lebed RF, Uraltsev NG (2000) Precision studies of duality in the ’t Hooft model. Phys Rev D 62:094011., arXiv:hep-ph/0006346
  10. 10.
    Bigi IIY, Shifman MA, Uraltsev N, Vainshtein AI (1999) Heavy flavor decays, OPE and duality in two-dimensional ’t Hooft model. Phys Rev D 59:054011. arXiv:hep-ph/9805241ADSCrossRefGoogle Scholar
  11. 11.
    Shifman MA, Voloshin MB (1986) Hierarchy of lifetimes of charmed and beautiful hadrons. Sov Phys JETP 64:698Google Scholar
  12. 12.
    Lenz A (2015) Lifetimes and heavy quark expansion. Int J Mod Phys A 30:1543005. arXiv:1405.3601ADSCrossRefGoogle Scholar
  13. 13.
    Altarelli G, Martinelli G, Petrarca S, Rapuano F (1996) Failure of local duality in inclusive nonleptonic heavy flavor decays. Phys Lett B 382:409–414., arXiv:hep-ph/9604202ADSCrossRefGoogle Scholar
  14. 14.
    Uraltsev NG (1996) On the problem of boosting nonleptonic b baryon decays. Phys Lett B 376:303–308., arXiv:hep-ph/9602324ADSCrossRefGoogle Scholar
  15. 15.
    Neubert M, Sachrajda CT (1997) Spectator effects in inclusive decays of beauty hadrons. Nucl Phys B 483:339–370., arXiv:hep-ph/9603202ADSCrossRefGoogle Scholar
  16. 16.
    LHCB collaboration, Aaij R et al (2013) Precision measurement of the \(\Lambda _b\) baryon lifetime. Phys Rev Lett 111:102003., arXiv:1307.2476
  17. 17.
    LHCB collaboration, Aaij R etal (2014) Precision measurement of the ratio of the \(\Lambda ^0_b\) to \(\overline{B}^0\) lifetimes. Phys Lett B 734:122–130., arXiv:1402.6242ADSCrossRefGoogle Scholar
  18. 18.
    LHCB collaboration, Aaij R et al (2014) Measurements of the \(B^+, B^0, B^0_s\) meson and \(\Lambda ^0_b\) baryon lifetimes. JHEP 04:114., arXiv:1402.2554
  19. 19.
    Bigi IIY, Blok B, Shifman MA, Vainshtein AI (1994) The baffling semileptonic branching ratio of B mesons. Phys Lett B 323:408–416., arXiv:hep-ph/9311339ADSCrossRefGoogle Scholar
  20. 20.
    Falk AF, Wise MB, Dunietz I (1995) Inconclusive inclusive nonleptonic \(B\) decays. Phys Rev D 51:1183–1191., arXiv:hep-ph/9405346ADSCrossRefGoogle Scholar
  21. 21.
    Buchalla G, Dunietz I, Yamamoto H (1995) Hadronization of \(b \rightarrow c \bar{c} s\). Phys Lett B 364:188–194., arXiv:hep-ph/9507437ADSCrossRefGoogle Scholar
  22. 22.
    Lenz A (2000) Some comments on the missing charm puzzle. In: Heavy flavours and CP violation. Proceedings, 8th UK Phenomenology workshop, Durham, UK, September 19–24, 2000. arXiv:hep-ph/0011258
  23. 23.
    Krinner F, Lenz A, Rauh T (2013) The inclusive decay \(b \rightarrow c\bar{c}s\) revisited. Nucl Phys B 876:31–54., arXiv:1305.5390ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Czarnecki A, Slusarczyk M, Tkachov FV (2006) Enhancement of the hadronic b quark decays. Phys Rev Lett 96:171803., arXiv:hep-ph/0511004
  25. 25.
    HFLAV collaboration.
  26. 26.
    Lenz A (2012) Theoretical update of \(B\)-mixing and lifetimes. In: 2012 electroweak interactions and unified theories: proceedings of the 47th Rencontres de Moriond on electroweak interactions and unified theories, La Thuile, March 3–10, 2012. arXiv:1205.1444,
  27. 27.
    Artuso M, Borissov G, Lenz A (2016) CP violation in the \(B_s^0\) system. Rev Mod Phys 88:045002., arXiv:1511.09466
  28. 28.
    Lenz A, Nierste U (2007) Theoretical update of \(B_s - \bar{B}_s\) mixing. JHEP 06:072., arXiv:hep-ph/0612167CrossRefGoogle Scholar
  29. 29.
    Lenz A, Nierste U (2011) Numerical updates of lifetimes and mixing parameters of B mesons. In: CKM unitarity triangle. Proceedings, 6th international workshop, CKM 2010, Warwick, UK, September 6–10, 2010. arXiv:1102.4274,
  30. 30.
    Heavy Flavor Averaging Group (HFAG) collaboration, Amhis Y et al (2014) Averages of \(b\)-hadron, \(c\)-hadron, and \(\tau \)-lepton properties as of summer 2014. arXiv:1412.7515
  31. 31.
    HFLAV collaboration, B lifetime and oscillation parameters, summer 2015.
  32. 32.
    LHCB collaboration, Aaij R et al (2016) Measurement of the \(CP\) asymmetry in \(B_s^0-\overline{B}{}_s^0\)mixing. Phys Rev Lett 117:061803.,10.1103/PhysRevLett.117.061803, arXiv:1605.09768
  33. 33.
    Beneke M, Buchalla G, Lenz A, Nierste U (2003) CP asymmetry in flavor specific B decays beyond leading logarithms. Phys Lett B 576:173–183., arXiv:hep-ph/0307344ADSCrossRefGoogle Scholar
  34. 34.
    Palmer WF, Stech B (1993) Inclusive nonleptonic decays of B and D mesons. Phys Rev D 48:4174–4182. Scholar
  35. 35.
    Dunietz I, Incandela J, Snider FD, Yamamoto H (1998) Large charmless yield in B decays and inclusive B decay puzzles. Eur Phys J C 1:211–219., arXiv:hep-ph/9612421ADSCrossRefGoogle Scholar
  36. 36.
    Lenz A, Nierste U, Ostermaier G (1997) Penguin diagrams, charmless B decays and the missing charm puzzle. Phys Rev D 56:7228–7239., arXiv:hep-ph/9706501ADSCrossRefGoogle Scholar
  37. 37.
    Franco E, Lubicz V, Mescia F, Tarantino C (2002) Lifetime ratios of beauty hadrons at the next-to-leading order in QCD. Nucl Phys B 633:212–236., arXiv:hep-ph/0203089ADSCrossRefGoogle Scholar
  38. 38.
    Becirevic D (2001) Theoretical progress in describing the B meson lifetimes. PoS HEP 098. arXiv:hep-ph/0110124
  39. 39.
    Fermilab Lattice, MILC collaboration, Bazavov A et al (2016) \(B^0_{(s)}\)-mixing matrix elements from lattice QCD for the standard model and beyond. Phys Rev D 93:113016., arXiv:1602.03560
  40. 40.
    Blanke M, Buras AJ (2016) Universal unitarity triangle 2016 and the tension between \(\Delta M_{s,d}\) and \(\varepsilon _K\) in CMFV models. Eur Phys J C 76:197., arXiv:1602.04020
  41. 41.
    Beneke M, Buchalla G, Dunietz I (1996) Width difference in the \(B_s-\bar{B_s}\) system. Phys Rev D 54:4419–4431.,10.1103/PhysRevD.83.119902, arXiv:hep-ph/9605259
  42. 42.
  43. 43.
    Aoki S et al (2014) Review of lattice results concerning low-energy particle physics. Eur Phys J C 74:2890., arXiv:1310.8555
  44. 44.
    Bobeth C, Haisch U, Lenz A, Pecjak B, Tetlalmatzi-Xolocotzi G (2014) On new physics in \(\Delta \Gamma _{d}\). JHEP 06:040., arXiv:1404.2531
  45. 45.
    Asatrian HM, Hovhannisyan A, Nierste U, Yeghiazaryan A (2017) Towards next-to-next-to-leading-log accuracy for the width difference in the \(B_s-\bar{B}_s\) system: fermionic contributions to order \((m_c/m_b)^0\) and \((m_c/m_b)^1\). JHEP 10:191., arXiv:1709.02160
  46. 46.
    HFLAV collaboration, Global fit for \(D^{0}-\bar{D}^{0}\) mixing, CHARM15.
  47. 47.
    Particle Data Group (PDG) collaboration.
  48. 48.
    Georgi H (1992) \(D-\bar{D}\) mixing in heavy quark effective field theory. Phys Lett B 297:353–357., arXiv:hep-ph/9209291ADSCrossRefGoogle Scholar
  49. 49.
    Ohl T, Ricciardi G, Simmons EH (1993) D-anti-D mixing in heavy quark effective field theory: the sequel. Nucl Phys B 403:605–632., arXiv:hep-ph/9301212ADSCrossRefGoogle Scholar
  50. 50.
    Falk AF, Grossman Y, Ligeti Z, Petrov AA (2002) SU(3) breaking and \(D^0-\bar{D}^0\) mixing. Phys Rev D 65:054034., arXiv:hep-ph/0110317
  51. 51.
    Falk AF, Grossman Y, Ligeti Z, Nir Y, Petrov AA (2004) The \(D^0\) - \(\bar{D}^0\) mass difference from a dispersion relation. Phys Rev D 69:114021., arXiv:hep-ph/0402204
  52. 52.
    Glashow SL, Iliopoulos J, Maiani L (1970) Weak interactions with lepton-hadron symmetry. Phys Rev D 2:1285–1292. Scholar
  53. 53.
    Bobrowski M, Lenz A, Riedl J, Rohrwild J (2010) How large can the SM contribution to CP violation in \(D^0-\bar{D}^0\) mixing be? JHEP 03:009., arXiv:1002.4794
  54. 54.
    Lenz A, Rauh T (2013) D-meson lifetimes within the heavy quark expansion. Phys Rev D 88:034004., arXiv:1305.3588
  55. 55.
    Bigi IIY, Uraltsev NG (2001) \(D^0\) - \(\bar{D}^0\) oscillations as a probe of quark hadron duality. Nucl Phys B 592:92–106., arXiv:hep-ph/0005089ADSCrossRefGoogle Scholar
  56. 56.
    Bobrowski M, Lenz A, Rauh T (2012) Short distance \(D^0\) - \(\bar{D}^0\) mixing. In: Proceedings, 5th international workshop on charm physics (Charm 2012), Honolulu, Hawaii, USA, May 14–17, 2012. arXiv:1208.6438
  57. 57.
    Golowich E, Pakvasa S, Petrov AA (2007) New physics contributions to the lifetime difference in \(D^0\)-\(\bar{D}^0\) mixing. Phys Rev Lett 98:181801., arXiv:hep-ph/0610039

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di FisicaLa Sapienza, University of RomeRomeItaly

Personalised recommendations