Skip to main content

Physical, Mechanical and Acoustical Properties of Cane for Reeds

  • Chapter
  • First Online:
Handbook of Materials for Wind Musical Instruments
  • 962 Accesses

Abstract

Cane or the giant reed (Arundo donax), growing in Mediterranean regions, in the South of France, or South of Spain or in Italy is the raw material preferred by musicians for the reeds of clarinets, saxophones, oboes and bassoons. Australian cane growing in Adelaide region is also of good quality. Being a natural material, the cane exhibits very large variability in its physical, mechanical and acoustical properties. Cane is an anisotropic material, in which symmetry is orthotropic, determined by the directions of plant growth. Anatomic structure of cane is composed of the following main elements: vascular bundle. vascular bundle sheath, fibres and parenchyma cells. The distribution of these anatomic elements determines the quality of reeds. In this chapter, specifically addressed properties of cane (Arundo donax) are: the shrinkage, the density, the mechanical and acoustical properties expressed by the moduli of elasticity and the internal friction parameters—tan δ or Q factor. New materials were suggested for reeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akahoshi H, Obataya E (2015) Effects of wet-dry cycling on the mechanical properties of Arundo donax L. used for vibrating reed in woodwind instruments. Wood Sci Techn 49:1171–1183

    Article  Google Scholar 

  • Allard JF (1993) Propagation of sound in porous media: modelling sound adsorbing materials. Chapman and Hall, London

    Book  Google Scholar 

  • Almeida A (2006) The physics of double -reed wind instruments and its application to sound synthesis. PhD Thesis. Universite Paris 6, France

    Google Scholar 

  • Angyalossy V, Pace MR, Evert RF, Marcati CR, Oskolski AA, Terrazas T, Kotina E, Lens FP, Mazzoni-Viveiros SC, Angeles G, Machado SR (2016) IAWA list of microscopic bark features. IAWA J 37(4):517–615

    Article  Google Scholar 

  • Archer RR (1986) Growth stresses and strains in trees. Springer, Berlin

    Google Scholar 

  • Backus J (1961) Vibrations of the reed and the air column in the clarinet. J Acoust Soc Am 33(6):806–809

    Article  ADS  Google Scholar 

  • Bate GC, Heelas BV (1975) Studies on the nitrate nutrition of two indigenous Rhodesian grasses. J Appl Ecol 12:941–952

    Article  Google Scholar 

  • Benade AH (1990) Fundamentals of musical acoustics. Courier Corporation. New Edition

    Google Scholar 

  • Benade AH, Richards WB (1983) Oboe normal mode adjustment via reed and staple proportioning. J Acoust Soc Am 73(5):1794–1803

    Article  ADS  Google Scholar 

  • Blais ZE (2011) Effects of time on the sound quality of cane oboe reeds. Report to Worcester Polytechnic Institute—Degree: Bachelor of Science

    Google Scholar 

  • Blasco-Yepes C, Payri B (2010) The influence of reed making on the performance and sound quality of the oboe. Proceeding SMC Conference http://smcnetwork.org/files/proceedings/2010/5.pdf

  • Bournel-Bosson A (2015) L’anche du basson français. Traditions et recherches pour la modernitĂ©. Rapport Conservatoire National SupĂ©rieur de Musique et de Danse de Paris

    Google Scholar 

  • Brod H (1830) MĂ©thode pour le hautbois. vol 1 & 2. Paris, Schonenberger, reprint by Librairie Rouchaleou Montpellier, France

    Google Scholar 

  • Bucur V (2006a) Material characterization. In: Bucur V (ed) Acoustics of wood, 2nd edn. Springer, Berlin, pp 37–103

    Chapter  Google Scholar 

  • Bucur V (2006b) Local elastic characterisation. In: Bucur V (ed) Acoustics of wood, 2nd edn. Springer, Berlin, pp 127–134

    Chapter  Google Scholar 

  • Burgess G, Haynes B (2004) The Oboe. Yale University Press, New Haven, London

    Google Scholar 

  • Burgess G, Hedrick P (1990) The oldest English oboe reeds? An examination of nineteen surviving examples. Galpin Soc J 42:32–67

    Article  Google Scholar 

  • Casadonte DJ (1995) The Clarinet Feed: an introduction to its biology, chemistry, and physics. PhD. diss., The Ohio State University

    Google Scholar 

  • Ceasar-Spall K, Spall JC (1997) Regression analysis as an aid in making oboe reeds. J Test Eval 25(4):439–444

    Article  Google Scholar 

  • Chaigne A, Kergomard J (2013) Acoustique des instruments de musique. Paris, Ed Belin

    Google Scholar 

  • Chaigne A, Kergomard J (2016) Acoustics of musical instruments. Springer

    Google Scholar 

  • Cheng JY, Tsai CG, Lee SC (2010) Bamboos as the material for saxophone reed. In Proceeding 20th ICA 20th International Congress on Acoustics Sydney, Australia

    Google Scholar 

  • Clair B, Ruelle J, BeauchĂŞne J, PrĂ©vost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rain forest species. IAWA J 27(3):329–338

    Article  Google Scholar 

  • Dalmont JP, Gilbert J, Olivier S (2003) Nonlinear characteristics of single reed instruments: quasi-static volume flow and reed operating measurements. J Acoust Soc Am 114:2253–2262

    Article  ADS  Google Scholar 

  • Dixon PG, Gibson LJ (2014) The structure and mechanics of moso bamboo material. J Royal Soc Interface 11(99):20140321

    Article  Google Scholar 

  • Donaldson L, Singh AP (2016) Chapter 6—Reaction wood. In: Kim YS, Funada R, Sing AP (eds) Secondary xylem biology. origin, function and applications.Academic Press, New York, pp 93–110

    Chapter  Google Scholar 

  • Doyle J, Walke JCF (1985) Indentation hardness of wood. Wood Fiber Sci 17(3):369–376

    Google Scholar 

  • Fachinetti ML, Boutillon X, Constantinescu A (2003) Numerical and experimental modal analysis of the reed and pipe of clarinet. J Acoust Soc Am 113:2874–2883

    Article  ADS  Google Scholar 

  • Fischer-Cripps AC (ed) (2004) Nanoindentation. Springer

    Google Scholar 

  • Fletcher NH, Rossing TD (2010) The physics of musical instruments. Springer

    Google Scholar 

  • Fox (1987) See in Bowman (2014) http://www.foxproducts.com/e1e4aecd04_sites/www.foxproducts.com/files/TakingCareOfYourBassoon.pdf

  • Fuks L, Sundberg J (1996) Blowing pressures in reed woodwind instruments. Quart. Prog. Status Rep., Speech Music and Hearing 41–56

    Google Scholar 

  • Garfield BH (1972) An approach to greater reed longevity. Woodwind World 13(4):3

    Google Scholar 

  • Gazengel B, Petiot JF (2013) Objective and subjective characterization of saxophone reeds. <hal-00782949v2> https://hal.archives-ouvertes.fr/hal-00782949/document

  • Gazengel B, Petitot JF, Soltes M (2012) Objective and subjective characterization of saxophone reeds. Proc Inst Acoustics 23–27

    Google Scholar 

  • Gazengel B, Dalmont JP, Petiot JF (2016) Link between objective and subjective characterization of Bb clarinet reeds. Appl Acoust 106:155–166

    Article  Google Scholar 

  • Glave S, Pallon J, Bornman C, Björn LO, WallĂ©n R, RĂĄstam J, Malmqvist K (1999) Quality indicators for woodwind reed material. Nucl Instrum Methods Phys Res, Sect B 150(1):673–678

    Article  ADS  Google Scholar 

  • Grey JM, Gordon JW (1978) Perceptual effects of spectral modifications on musical timbres. J Acoust Soc Am 63(5):1493–1500

    Article  ADS  Google Scholar 

  • Grosser D, Liese W (1971) On the anatomy of Asian bamboo, with special reference to their vascular bundles. Woos Sci Technol 5:290–312

    Article  Google Scholar 

  • Guimezanes T (2007) Etude expĂ©rimentale et numĂ©rique de l’anche de clarinette. PhD Univ. Du Main, Le Mans, France

    Google Scholar 

  • Gutierrez-Lemini D (2013) Engineering Viscoelasticity. Springer

    Google Scholar 

  • Hanai K (2014) Reed testing device for single reed instrument. US Patent 8,666,696

    Google Scholar 

  • Hapca A (2017) Personal communication relating the statistical treatment of data related to Arundo donax density—data base JM Heinrich

    Google Scholar 

  • Heinrich JM (1973) Etude botanique de l’anche du roseau. Bulletin du GAM—Groupe d’Acoustique Musicale, UniversitĂ© Paris VI, N ° 71, DĂ©cembre

    Google Scholar 

  • Heinrich JM (1979) The bassoon reed. Int J Double Reed Soc 7:17–43 translation—from Bull. Groupe d’Acoustique Musicale Nos. 82 and 83, Paris, 1976http://www.idrs.org/publications/controlled/Journal/JNL7/BSNREED.html; http://www.lam.jussieu.fr/Membres/Castellengo/publications.html

  • Heinrich JM (1986) Recherche du mĂ©canisme rĂ©gulateur de la qualitĂ© musicale d’une anche double confectionnĂ©e en canne de Provence. Texte du 16 dĂ©cembre, manuscript

    Google Scholar 

  • Heinrich JM (1987) Contribution Ă  l’étude de l’anche du basson. Universite Paris VI Thesis review by William Waterhouse in The Double Reed, Vol. 10, No. 1, Spring 1987 https://www.idrs.org/publications/controlled/DR/DR10.1/DR10.1.Water.thesis.html

  • Heinrich JM (1991) «Arundo donax», das Holz, mit dem wir leben mussen! Tibia 16(4):610–621

    Google Scholar 

  • Heinrich JM (1996) Recherches dur les propriĂ©tĂ©s densitomĂ©triques du matĂ©riau Canne de Provence et ses similaires Ă©trangers; relations avec la qualitĂ© musicale, Ă©tude associĂ©e d’une mesure de duretĂ©. Bourse de Recherche 1991, attribuĂ©e par la Direction de la Musique et de la Danse, Ministère de la Culture. Rapport final. 100 p

    Google Scholar 

  • Heinrich JM (2008) ConfĂ©rence donnĂ©e au Laboratoire d’Acoustique Musicale de l’UniversitĂ© Paris VI. «Art/Science, Atelier/Laboratoire—Quelle philosophie pour la recherche en facture instrumentale?

    Google Scholar 

  • Heinrich JM (2012) Un-peu-d’histoire-agronomique-de-la-canne-de-Provence. http://www.donati-reeds.com/wp-content/uploads/2012/05/5a.-Un-peu-dhistoire-agronomique-de-la-canne-de-Provence.pdf accessed 15 January 2017. A suivre: DonnĂ©es historiques sur la botanique Ă©conomique du roseau Arundo donax (canne de Provence); culture, destination manufacturière et consĂ©quences pour l’usage musical

  • Heinrich JM (2013) Modifications tissulaires sous l’effet de contraintes mĂ©caniques observĂ©es sur des Ă©chantillons de canne de Provence (Arundo donax). Manuscript chez l’auteur et collection photos microscopiques

    Google Scholar 

  • Heinrich JM (2016) See Rachor DJ (2016) The use of cane in textile mills. A documentation of the research of Dr. Jean-Marie Heinrich. The Double Reed 39(2):159–165

    Google Scholar 

  • Heinrich JM (2017) Personal communication about the density of Arundo donax

    Google Scholar 

  • Heinrich JM (2018) FrĂĽhere Rohrholzkunde, in preparation for publication in Rohrblatt (in preparation)

    Google Scholar 

  • Itravaia LJ (1978) The effects of hardness and stiffness of bassoon cane upon performance of the reed. J Intern Double Reed Soc nr 6:30–46 http://www.idrs.org/publications/controlled/Journal/JNL6/effects.html

  • Jäger A, Bader T, Hofstetter K, Eberhardsteiner J (2011a) The relation between indentation modulus, microfibril angle, and elastic properties of wood cell walls. Compos A Appl Sci Manuf 42(6):677–685

    Article  Google Scholar 

  • Jäger A, Hofstetter K, Buksnowitz C, Gindl-Altmutter W, Konnerth J (2011b) Identification of stiffness tensor components of wood cell walls by means of nanoindentation. Compos A Appl Sci Manuf 42(12):2101–2109

    Article  Google Scholar 

  • Joseleau JP, Miksche GE, Yasuda S (1977) Structural variation of Arundo donax lignin in relation to growth. Holzforschung 31:19–20

    Article  Google Scholar 

  • Kawasaki M, Nobuchi T, Nakafushi Y, Nose M, Shiojiri M (2015) Structure and biomechanics of culms of Phragmites australis used for reeds of Japanese wind instrument “hichiriki”. Microsc Res Tech 78(4):260–267

    Article  Google Scholar 

  • Kawasaki M, Nobuchi T, Nakafusi Y, Nose M, Shibata M, Shiojiri M (2016) Structural and biomechanical study of clarinet reeds made from Arundo donax. Microsc Microanal 22(S3):1040–1041

    Article  ADS  Google Scholar 

  • Kawasaki M, Nobuchi T, Nakafushi Y, Nose M, Shibata M, Li P, Shiojiri M (2017) Structural observations and biomechanical measurements of clarinet reeds made from Arundo donax. Microsc. Res. Techn 80:959–968

    Article  Google Scholar 

  • Kemp C, Scavone G (2016) Vibrational analysis of Arundo donax L (woodwind reed cane) through internal friction measurements and microstructure evaluation. Proceeding ICA 2016—570, vol 28 065001, 10 p

    Google Scholar 

  • Kemp C and Scavone G (2017) Microstructure contributions to vibrational damping and identification of damage mechanisms in Arundo donax L: reed cane for wind instruments. MRS Advances; Fall Manuscript, Symposium TC3; SCHOLARONE Manuscript. MRSF 16-2553795.R2. Submitted 13 Feb. 2017. http://www.cambridge.org/core/societies/materials-research-society; https://doi.org/10.1157/adv.2017.223

  • Keunecke D, Eder M, Burgert I, Niemz P (2008) Micromechanical properties of common yew (Taxus baccata) and Norway spruce (Picea abies) transition wood fibers subjected to longitudinal tension. J wood Sci 54(5):420–422

    Article  Google Scholar 

  • Koleski P, Mills A, Sedgley M (1998) Anatomic characteristics affecting the musical performance of clarinet reeds made from Arundo donax L. Ann Bot 81:151–155

    Article  Google Scholar 

  • Kollmann FP, CĂ´tĂ© WF (1968). Solid Wood. Principles of Wood Science and Technology, Springer

    Google Scholar 

  • Kollmann FP, CĂ´tĂ© WF (1984) Solid wood. Principles of Wood Science and Technology t Springer-Verlag, Tokyo

    Google Scholar 

  • Kopp JB (2003) A conversation about resistance and compliance in bassoon reeds. International Double Reed Society https://koppreeds.com/virtues.html

  • Lacy EV (2001) Testing the density or specific gravity of bassoon cane. Double Reed 26:4

    Google Scholar 

  • Lawton CE (1998) A study of variation in the quality of oboe reeds made from Arundo donax L. (Gramieae) (Doctoral dissertation, University of Reading)

    Google Scholar 

  • Lawton CE, Jeronimidis G, Pretlove AJ, Barnett JR (1996) Anatomical factors affecting the quality of oboe reeds made from Arundo donax L. In: Donaldson LA, Smith AP, Butterfield BG, Whitehouse LT (eds) Recent advances in wood anatomy. Forest Research Institute, Rotarua, New Zealand, pp 308–315

    Google Scholar 

  • Ledet D (2008) Oboe reed and styles. Theory and practice, 2nd edn. Indiana University Press, Bloomington

    Google Scholar 

  • LĂ©gère G (2007) Doctoral Dissertation University of Toronto Canada

    Google Scholar 

  • LĂ©gère Reeds Ltd. (2011) Bassoon Reeds. Retrieved from http://www.legere.com/sites/default/files/images/bassoon.jpg. http://www.legere.com/bassoon-reeds/ 27 February 2017)

  • Lord AE Jr (2003) Viscoelasticity of the giant reed material. Wood Sci Techn 37:177–188

    Article  Google Scholar 

  • Mannan S, Knox JP, Basu S (2017) Correlations between axial stiffness and microstructure of a species of bamboo. R Soc Open Sci 4(1):160412

    Article  ADS  MathSciNet  Google Scholar 

  • Mattheck C (1992) Design in der Natur. Der Baum als Lehrmeister. Rombach Verlag Freiburg, Germany

    Google Scholar 

  • Mattheck C (1998) Design in nature: learning from trees. Springer Science & Business Media

    Google Scholar 

  • Muñoz ArancĂłn A, Gazengel B, Dalmont JP, Conan E (2016) Estimation of saxophone reed parameters during playing. J Acoust Soc Am 139:52754–52765

    Article  Google Scholar 

  • Obataya E (1999) Suitability of acetylated woods for clarinet reed. J Wood Sci 45:106–112

    Article  Google Scholar 

  • Obataya E, Norimoto M (1999a) Acoustic properties of a reed (Arundo donax) used for the vibrating plates of a clarinet. J Acoust Soc Am 106(2):1108–1110

    Article  ADS  Google Scholar 

  • Obataya E, Norimoto M (1999b) Mechanical relaxation processes due to sugar in cane (Arundo donax). J Wood Sci 45:378–383

    Article  Google Scholar 

  • Obataya E, Umezawa T, Nakatsubo F, Norimoto M (1999) The effect of water soluble extractives in the acoustic properties of reed (Arundo donax L). Holzforschung 53:63–67

    Article  Google Scholar 

  • Obataya E, Gril J, Thibaut B (2004) Shrinkage of cane (Arundo donax). Part I. Irregular shrinkage of green cane due to collapse of parenchyma cells. J Wood Sci 50:295–300. Part II. Effect of drying conditions on the intensity of cell collapse J. Wood Sci 51:130–135

    Article  Google Scholar 

  • Okuyama T, Yamamoto H, Yoshida M, Hattori Y, Archer RR (1994) Growth stresses in tension wood: role of microfibrils and lignification. Ann Sci For 51(3):291–300

    Article  Google Scholar 

  • Picart P, Leval J, Piquet F, Boileau JP, Guimezanes T, Dalmont JP (2007) Traking high amplitude auto-oscillation with digital Fresnel holograms. Opt Express 15(13):8263–8274

    Article  ADS  Google Scholar 

  • Picart P, Leval J, Piquet F, Boileau JP, Guimezanes T, Dalmont JP (2010) Study of the mechanical behaviour of a clarinet reed under forced and auto-oscillations with digital Fresnel holography. Strain 46(1):89–100

    Article  Google Scholar 

  • Pinard F, Laine B, Vach H (2003) Musical quality assessment of clarinet reeds using optical holography. J Acoust Soc Am 113:1736–1742

    Article  ADS  Google Scholar 

  • Rachor DJ (2004) The importance of cane selection in historical bassoon reed-making. Galpin Soc J 57:146–149

    Google Scholar 

  • Rachor DJ (2016) The use of cane in textile mills. A documentation of the research of Dr. Jean-Marie Heinrich. Double Reed 39(2):159–165

    Google Scholar 

  • RĂĽggerberg M, Burgert I, Speck T (2010) Structural and mechanical design of tissue interfaces in the giant reed Arundo donax. J R Soc Interface 7:499–506

    Article  Google Scholar 

  • Sanson GD, Kerr SA, Gross KA (2007) Do silica phytoliths really wear mammalian teeth? J Archaeol Sci 34(4):526–531

    Article  Google Scholar 

  • Schillinger C (2007) The pedagogy of bassoon reed making: an historical perspective. PhD. diss. Arizona State University

    Google Scholar 

  • Shatalov AA, Pereira H (2006) Papermaking fibers from giant reed Arundo donax L by advanced ecologically friendly pulping and bleaching technologies. BioResources 1(1):45–61

    Google Scholar 

  • Spatz HC, Beismann H, Bruchert F, Emanns, Speck T (1997) Biomechanics of the giant reed Arundo donax. Phil Trans R Soc London B 352:1–10

    Article  ADS  Google Scholar 

  • Speck O, Spatz HC (2004) Damped oscillations of the giant reed Arundo donax (Poaceae). Am J Botany 91(6):789–796

    Article  Google Scholar 

  • Taillard P A, LaloĂ« F, Gross M, Dalmont J P, Kergomard J (2014a). Measurements of resonance frequencies of clarinet reeds and simulations. HAL Id: hal-00668277. https://hal.archives-ouvertes.fr/hal-00668277v1

  • Taillard PA, Laloe F, Gross M, Dalmond JP, Kergomard J (2014b) Statistical estimation of mechanical parameters of clarinet reeds using experimental and numerical approaches. Acta Acoustica with Acustica 103(3):555–573. https://arxiv.org/pdf/1202.2114.pdf

    Article  Google Scholar 

  • Tze WTY, Wang S, Rials TG, Pharr GM, Kelley S (2007) Nanoindentation of wood cell walls: continuous stiffness and hardness measurements. Compos Part A: Appl Sci Manuf 38(3):945–953

    Article  Google Scholar 

  • Veselack MSW (1979) Comparison of cell and tissue differences in good and unusable clarinet reeds. PhD Diss. Ball State University, Muncie, IN

    Google Scholar 

  • Wang X, Ren H, Zhang B, Fei B, Burgert I (2012) Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance. J R Soc Interface 9(70):988–996

    Article  Google Scholar 

  • Wang X, Deng Y, Wang S, Liao C, Meng Y, Pham T (2013) Nanoscale characterization of reed stalk fiber cell walls. BioResources 8(2):1986–1996

    Google Scholar 

  • Watson L, Dallwitz MJ (2008) The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. The Grass Genera of the World. Retrieved 2009-08-19

    Google Scholar 

  • Weidenfeller B, Lambri OA, Bonifacich FG, Arlic U, Gargicevich D (2018) Damping of the woodwind instrument reed material Arundo donax L. Mater Res 21(supp. 2):e20170795

    Google Scholar 

  • West CA (1976) Controlling reeds in dry climate. Instrum Mag 31:4

    Google Scholar 

  • White P (1993) The Early bassoon reed in relation to the development of the bassoon from 1636. PhD Diss., Oxford University

    Google Scholar 

  • Wolfe Tarnopolsky AZ, Fletcher NH, Hollenberg LC, Smith J (2003) Some effects of the player’s vocal tract and tongue on wind instrument sound. Proc SMAC 3:307–310

    Google Scholar 

  • Wolfe J, Fletcher NH, Smith J (2015) The interactions between wind instruments and their players. Acta Acustica united with Acustica 101(2):211–223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Voichita Bucur .

Appendix

Appendix

List of some American patents for reeds for woodwind instruments

Patent

Date

Applicant

Title

US 1,779,522 

Oct 28, 1930

Widmayer, Charles O

Reed for clarinets and saxophones

US 1,776,566

1930

Newton

 

US 2,296,737 

Sep 22, 1942

Wm R Gratz Co Inc

Reed

US 2,919,617 

Jan 5, 1960

Brilhart, Arnold R

Reeds for woodwing instruments

US 3,165,963 

Jan 19, 1965

Burns, John Keith Anthony

Reeds for musical instruments

US 3,267,791 

Aug 23, 1966

Roberts, Entpr. Inc.

Reed construction

US 3,340,759 

Sep 12, 1967

Petzke, Franklin J

Reed for woodwind instruments and method of manufacture

US 3,420,132 

Jan 7, 1969

Backus, John G

Reeds for woodwind instruments

US 3,705,820 

Dec 12, 1972

Oesterr Studien Atomenergie

Tongue for wind instruments and a method for producing same

US 3,705,820 

Dec 12,1972

Franz, Gutlbauer; Knotik, Karl

Tongue for wind instruments and a method for producing same

US 3,759,132 

Sep 18, 1973

Univ Southern California

Composite woodwind reed

US 3,905,268 

Sep 16, 1975

Gamble, John G

Reeds for saxophones , clarinets and other woodwinds

US 4,014,241 

Mar 29, 1977

Gamble, George W

Synthetic woodwind reed

US 4,145,949 

Mar 27, 1979

Kilian, Frank A

Musical reed

US 4,268,470 

May 19,1981

Nat. Res. Develop. Corporation

Polymer materials

US 4,282,277 

Aug 4, 1981

Bethlehem Steel Corporation

Oriented, semi-crystalline polymer product and method and apparatus for producing such product

US 4,337,683 

Jul 6, 1982

Backus, John G

Synthetic woodwind instrument reed and method for its manufacture

US 4,355,560 

Oct 26, 1982

Shaffer, David W

Reed construction

US 4,655,679 

Apr 7, 1987

Ltv Aerospace and Defense Company

Power translation device

US 4,850,925 

Jul 25, 1989

Lohman Manufacturing Co., Inc.

Deer call

US 4,979,420 

Dec 25, 1990

Cusack, John F

Stainless steel reed

US 5,030,402 

Jul 9, 1991

Zachariades Anagnostis E

Process for producing a new class of ultra-high-molecular-weight polyethylene orthopaedic prostheses with enhanced mechanical properties

US 5,227,572 

Jul 13, 1993

Cusack, John F

Titanium reed for musical instruments

US 5,399,308

Mar 21, 1995

Woodhams, Raymond T.

Process for the continuous production of high modulus articles from high molecular weight plastics

US 5,379,673

Jan 10, 1995

Vogt , Robert F

Method for treatment of reeds

US 5,542,331 

Aug 6, 1996

Hartman, Harry

Sound-producing reed for wind instruments

US 6,087,571

Jul 11, 2000

Legere, Guy

Oriented polymer reeds for musical instruments

US 6,346,663

Feb 12, 2002

Perlman, Daniel

Water-permeable polymer -treated cane reeds for wind instruments

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bucur, V. (2019). Physical, Mechanical and Acoustical Properties of Cane for Reeds. In: Handbook of Materials for Wind Musical Instruments . Springer, Cham. https://doi.org/10.1007/978-3-030-19175-7_4

Download citation

Publish with us

Policies and ethics