Skip to main content

One for All and All for One! Increased Plant Heavy Metal Tolerance by Growth-Promoting Microbes: A Metabolomics Standpoint

  • Chapter
  • First Online:
Plant Metallomics and Functional Omics

Abstract

Increasing urbanization and industrialization cause the unavoidable mass release of pollutants in the environment. Nanoparticles and heavy metals are among the most threatening agents affecting ecosystems. Agriculture is severely affected by these ecotoxicants: crop productivity dramatically drops, since plant growth and development are negatively impacted. Arable lands are sinks accumulating pollutants which establish physicochemical associations with soil particles: this leads to changes in the properties of soils, namely texture and, ultimately, alters the availability of nutrients. Green technologies in agriculture rely on the use of environmental friendly alternatives to boost crop productivity under exogenous constraints. In this context, the use of beneficial plant growth-promoting microbes (PGPMs) is seen as a promising strategy to protect plants against the stress triggered by ecotoxicants. A strong body of evidence in the literature has shown that some PGPMs (e.g., local strains) are natural heavy metal accumulators and may also influence the metabolome of the plants they associate with. Therefore, their action is both direct and indirect. An example of the former is the secretion of extracellular polysaccharides (EPS) which function as a mechanical barrier and entrap heavy metals; an indirect effect is the priming of defense responses leading to the synthesis of specific classes of plant secondary metabolites. In this chapter, the accent will be put on the analytical power of metabolomics in conjunction with meta-metabolomics (i.e., the analysis of the metabolome of an entire community of microbes associating with different plant organs). The ultimate goal is to unravel the mechanisms responsible for the increased heavy metal tolerance in crops establishing an interaction with PGPMs. We will end our survey with some perspectives on innovative strategies in agrobiotechnology valorizing PGPMs in conjunction with fertilization using beneficial elements like silicon (Si) and capable of providing sustainable solutions facing the ever-increasing release of pollutants in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas SM (2013) The influence of biostimulants on the growth and on the biochemical composition of Vicia faba cv. Giza 3 beans. Rom Biotechnol Lett 18:8061–8068

    CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ahonen-Jonnarth U, Van Hees PA, LUNDSTRÖM US, Finlay RD (2000) Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytol 146:557–567

    Article  CAS  Google Scholar 

  • Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, Joubert J-M, Pugin A (2003) Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant-Microbe Interact 16:1118–1128

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Babula P, Klejdus B, Kovacik J, Hedbavny J, Hlavna M (2015) Lanthanum rather than cadmium induces oxidative stress and metabolite changes in Hypericum perforatum. J Hazard Mater 286:334–342

    Article  CAS  PubMed  Google Scholar 

  • Baker AJ (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Beattie GA (2018) Metabolic coupling on roots. Nat Microbiol 3:396–397

    Article  CAS  PubMed  Google Scholar 

  • Beconcini D, Fabiano A, Zambito Y, Berni R, Santoni T, Piras A, Di Stefano R (2018) Chitosan-based nanoparticles containing cherry extract from Prunus avium L. to improve the resistance of endothelial cells to oxidative stress. Nutrients 10:1598

    Article  PubMed Central  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148

    PubMed  PubMed Central  Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. J Exp Bot 58:4019–4026

    Article  CAS  PubMed  Google Scholar 

  • Berni R, Cantini C, Romi M, Hausman J-F, Guerriero G, Cai G (2018a) Agrobiotechnology goes wild: ancient local varieties as sources of bioactives. Int J Mol Sci 19:2248

    Article  PubMed Central  Google Scholar 

  • Berni R, Romi M, Parrotta L, Cai G, Cantini C (2018b) Ancient tomato (Solanum lycopersicum L.) varieties of tuscany have high contents of bioactive compounds. Horticulturae 4:51. https://doi.org/10.3390/horticulturae4040051

    Article  Google Scholar 

  • Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman J-F, Lutts S, Cai G, Guerriero G (2019a) Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ Exp Bot 161:98–106

    Article  CAS  Google Scholar 

  • Berni R, Romi M, Cantini C, Hausman J-F, Guerriero G, Cai G (2019b) Functional molecules in locally-adapted crops: the case study of tomatoes, onions and sweet cherry fruits from Tuscany in Italy. Front Plant Sci 9:1983

    Article  PubMed  PubMed Central  Google Scholar 

  • Billard V, Etienne P, Jannin L, Garnica M, Cruz F, Garcia-Mina J-M, Yvin J-C, Ourry A (2014) Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.). J Plant Growth Regul 33:305–316

    Article  CAS  Google Scholar 

  • Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2015) Biostimulants and crop responses: a review. Biol Agric Hortic 31:1–17

    Article  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Chamam A, Wisniewski-Dyé F, Comte G, Bertrand C, Prigent-Combaret C (2015) Differential responses of Oryza sativa secondary metabolism to biotic interactions with cooperative, commensal and phytopathogenic bacteria. Planta 242:1439–1452

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:752708

    Article  Google Scholar 

  • Cuypers A, Smeets K, Vangronsveld J (2009) Heavy metal stress in plants. In: Hirt H (ed) Plant stress biology: from genomics to systems biology. Wiley, pp 161–178

    Google Scholar 

  • Davies FT Jr, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158:777–786

    Article  CAS  Google Scholar 

  • Driouich A, Durand C, Cannesan M-A, Percoco G, Vicré-Gibouin M (2010) Border cells versus border-like cells: are they alike? J Exp Bot 61:3827–3831. https://doi.org/10.1093/jxb/erq216

    Article  CAS  PubMed  Google Scholar 

  • du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Article  Google Scholar 

  • Eghbaliferiz S, Iranshahi M (2016) Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: updated review of mechanisms and catalyzing metals. Phytother Res 30:1379–1391

    Article  CAS  PubMed  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120

    Article  Google Scholar 

  • Ertani A, Nardi S, Altissimo A (2012) Long-term research activity on the biostimulant properties of natural origin compounds. In: I World Congress on the Use of Biostimulants in Agriculture, vol 1009. pp 181–187

    Google Scholar 

  • Etalo DW, Jeon J-S, Raaijmakers JM (2018) Modulation of plant chemistry by beneficial root microbiota. Nat Prod Rep

    Google Scholar 

  • Friedlová M (2010) The influence of heavy metals on soil biological and chemical properties. Soil Water Res 5:21–27

    Article  Google Scholar 

  • Gall HL, Philippe F, Domon J (2015) Cell wall metabolism in response to abiotic stress. Plan Theory 4:112–166

    Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Diwan B (2016) Bacterial Exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71. https://doi.org/10.1016/j.btre.2016.12.006

    Article  Google Scholar 

  • Havaux M (2014) Carotenoid oxidation products as stress signals in plants. Plant J 79:597–606

    Article  CAS  PubMed  Google Scholar 

  • Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Jain S, Vaishnav A, Kasotia A, Kumari S, Choudhary DK (2014) Chapter 5—Plant growth-promoting bacteria elicited induced systemic resistance and tolerance in plants. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, San Diego, pp 109–132. https://doi.org/10.1016/B978-0-12-800875-1.00005-3

    Chapter  Google Scholar 

  • Jayakumar K, Jaleel CA, Vijayarengan P (2007) Changes in growth, biochemical constituents, and antioxidant potentials in radish (Raphanus sativus L.) under cobalt stress. Turk J Biol 31:127–136

    CAS  Google Scholar 

  • Jayakumar K, Jaleel CA, Azooz MM (2008) Phytochemical changes in green gram (Vigna radiata) under cobalt stress. Glob J Mol Sci 3:46–49

    CAS  Google Scholar 

  • Jayakumar K, Rajesh M, Baskaran L, Vijayarengan P (2013) Changes in nutritional metabolism of tomato (Lycopersicon esculantum Mill.) plants exposed to increasing concentration of cobalt chloride. Int J Food Nutr Saf 4:62–69

    Google Scholar 

  • Kauffman GL, Kneivel DP, Watschke TL (2007) Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci 47:261–267

    Article  CAS  Google Scholar 

  • Khalid M, Hassani D, Bilal M, Asad F, Huang D (2017) Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of Spinacia oleracea L. Bot Stud 58:35. https://doi.org/10.1186/s40529-017-0189-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kikuchi J, Ito K, Date Y (2018) Environmental metabolomics with data science for investigating ecosystem homeostasis. Prog Nucl Magn Reson Spectrosc 104:56–88. https://doi.org/10.1016/j.pnmrs.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  • Kilam D, Saifi M, Abdin MZ, Agnihotri A, Varma A (2015) Combined effects of Piriformospora indica and Azotobacter chroococcum enhance plant growth, antioxidant potential and steviol glycoside content in Stevia rebaudiana. Symbiosis 66:149–156

    Article  CAS  Google Scholar 

  • Kiprovski B, Malenčić Đ, ĐJurić S, Bursać M, Cvejić J, Sikora V (2016) Isoflavone content and antioxidant activity of soybean inoculated with plant-growth promoting rhizobacteria. J Serb Chem Soc 81:1239–1249

    Article  CAS  Google Scholar 

  • Kong Z, Glick BR (2017) Chapter Two: The role of plant growth-promoting bacteria in metal phytoremediation. In: Poole RK (ed) Advances in microbial physiology. Academic Press, pp 97–132. https://doi.org/10.1016/bs.ampbs.2017.04.001

    Google Scholar 

  • Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51

    Article  Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Singh D, Ghosh P, Kumar A (2017) Endophytic and epiphytic modes of microbial interactions and benefits. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, Fundamental mechanisms, methods and functions, vol 1. Springer, Singapore, pp 227–253. https://doi.org/10.1007/978-981-10-5813-4_12

    Chapter  Google Scholar 

  • Kunicki E, Grabowska A, Sękara A, Wojciechowska R (2010) The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic 22:9–13

    Article  Google Scholar 

  • Lemanceau P, Barret M, Mazurier S, Mondy S, Pivato B, Fort T, Vacher C (2017) Chapter Five: Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. In: Becard G (ed) Advances in botanical research, how plants communicate with their biotic environment. Academic Press, pp 101–133. https://doi.org/10.1016/bs.abr.2016.10.007

    Google Scholar 

  • Li Y-C, Tao W-Y, Cheng L (2009) Paclitaxel production using co-culture of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor. Appl Microbiol Biotechnol 83:233–239. https://doi.org/10.1007/s00253-009-1856-4

    Article  CAS  PubMed  Google Scholar 

  • Li K, Pidatala VR, Shaik R, Datta R, Ramakrishna W (2014) Integrated metabolomic and proteomic approaches dissect the effect of metal-resistant bacteria on maize biomass and copper uptake. Environ Sci Technol 48:1184–1193. https://doi.org/10.1021/es4047395

    Article  CAS  PubMed  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Liu H, Guo H, Musante C, Coskun SH, Nelson BC, White JC, Xing B, Dhankher OP (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO 2 and In 2 O 3 nanoparticles. Environ Sci Nano 3:1369–1379

    Article  CAS  Google Scholar 

  • Mady MA (2009) Effect of foliar application with yeast extract and Zinc on fruit setting and yield of faba bean (Vicia faba L). J Biol Chem Env Sci 4:109–127

    Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876. https://doi.org/10.3389/fpls.2016.00876

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA (2018) The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9:112. https://doi.org/10.3389/fpls.2018.00112

    Article  PubMed  PubMed Central  Google Scholar 

  • Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    Article  PubMed  Google Scholar 

  • Nardi S, Carletti P, Pizzeghello D, Muscolo A (2009) Biological activities of humic substances. Biophys-Chem Process Involv Nat Nonliving Org Matter Environ Syst 2:309–335

    Google Scholar 

  • Nardi S, Pizzeghello D, Schiavon M, Ertani A (2016) Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci Agric 73:18–23

    Article  CAS  Google Scholar 

  • Nelson EB (2004) Unidentified coryneform bacteria. Annu Rev Phytopathol 42:271–309

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2015) Endophytic and epiphytic microbes as “sources” of bioactive agents. Front Chem 3:34. https://doi.org/10.3389/fchem.2015.00034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nsanganwimana F, Pourrut B, Mench M, Douay F (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manag 143:123–134

    Article  CAS  Google Scholar 

  • Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015. https://doi.org/10.3390/ijms131114002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagnani G, Pellegrini M, Galieni A, D’Egidio S, Matteucci F, Ricci A, Stagnari F, Sergi M, Sterzo CL, Pisante M (2018) Plant growth-promoting rhizobacteria (PGPR) in Cannabis sativa ‘Finola’ cultivation: An alternative fertilization strategy to improve plant growth and quality characteristics. Ind Crop Prod 123:75–83

    Article  CAS  Google Scholar 

  • Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman J-F (2015) Target or barrier? The cell wall of early-and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci 6:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    Article  PubMed  PubMed Central  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ryffel F, Helfrich EJN, Kiefer P, Peyriga L, Portais J-C, Piel J, Vorholt JA (2016) Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J 10:632–643. https://doi.org/10.1038/ismej.2015.141

    Article  CAS  PubMed  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41. https://doi.org/10.1016/j.tplants.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  • Schaller A, Diez T (1991) Plant specific aspects of heavy metal uptake and comparison with quality standards for food and forage crops. In: Sauerbeck D, Lübben S (eds) Der Einfluß von festen Abfällen auf Böden, Pflanzen. KFA, Jülich, Germany, pp 92–125

    Google Scholar 

  • Schiavon M, Ertani A, Nardi S (2008) Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L. J Agric Food Chem 56:11800–11808

    Article  CAS  PubMed  Google Scholar 

  • Schiltz S, Gaillard I, Pawlicki-Jullian N, Thiombiano B, Mesnard F, Gontier E (2015) A review: what is the spermosphere and how can it be studied? J Appl Microbiol 119:1467–1481. https://doi.org/10.1111/jam.12946

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Köberl M, Mostafa A, Ramadan EM, Monschein M, Jensen KB, Bauer R, Berg G (2014) Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Front Microbiol 5:64. https://doi.org/10.3389/fmicb.2014.00064

    Article  PubMed  PubMed Central  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  PubMed  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 38:937–944

    Article  CAS  PubMed  Google Scholar 

  • van de Mortel JE, Schat H, Moerland PD, van Themaat EVL, Van Der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, AARTS MG (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324

    Article  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN (2017) Beneficial role of extremophilic microbes for plant health and soil fertility. J Agric Sci Bot 1:30–33

    Google Scholar 

  • Zhang S, Zhu W, Wang B, Tang J, Chen X (2011) Secondary metabolites from the invasive Solidago canadensis L. accumulation in soil and contribution to inhibition of soil pathogen Pythium ultimum. Appl Soil Ecol 48:280–286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berni, R., Guerriero, G., Cai, G. (2019). One for All and All for One! Increased Plant Heavy Metal Tolerance by Growth-Promoting Microbes: A Metabolomics Standpoint. In: Sablok, G. (eds) Plant Metallomics and Functional Omics. Springer, Cham. https://doi.org/10.1007/978-3-030-19103-0_3

Download citation

Publish with us

Policies and ethics