Advertisement

Serialization for Property Graphs

  • Dominik TomaszukEmail author
  • Renzo Angles
  • Łukasz Szeremeta
  • Karol Litman
  • Diego Cisterna
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1018)

Abstract

Graph serialization is very important for the development of graph-oriented applications. In particular, serialization methods are fundamental in graph data management to support database exchange, benchmarking of systems, and data visualization. This paper presents YARS-PG, a data format for serializing property graphs. YARS-PG was designed to be simple, extensible and platform independent, and to support all the features provided by the current database systems based on the property graph data model.

Keywords

Serialization Property graph Graph database 

Notes

Acknowledgements

This work was supported by the National Science Center, Poland (NCN) under research grant Miniatura 2 for Dominik Tomaszuk. This publication has received financial support from the Polish Ministry of Science and Higher Education under subsidy granted to the University of Bialystok for R&D and related tasks aimed at development of young scientists for Łukasz Szeremeta. Renzo Angles is funded by the Millennium Institute for Foundational Research on Data (Chile).

References

  1. 1.
    Adar, E.: GUESS: a language and interface for graph exploration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2006, pp. 791–800. ACM, New York (2006). https://doi.org/10.1145/1124772.1124889
  2. 2.
    Angles, R., Arenas, M., Barceló, M.A., Hogan, M.A., Reutter, M.A., Vrgoĉ, M.A.: Foundations of modern query languages for graph databases. CSUR 50(5) (2017).  https://doi.org/10.1145/3104031CrossRefGoogle Scholar
  3. 3.
    Angles, R., et al.: A core for future graph query languages. In: Proceedings of the 2018 International Conference on Management of Data, SIGMOD 2018, pp. 1421–1432. ACM, New York (2018).  https://doi.org/10.1145/3183713.3190654
  4. 4.
    Auber, D., et al.: TULIP 5 (2017)Google Scholar
  5. 5.
    Batagelj, V., Mrvar, A.: Pajek— analysis and visualization of large networks. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 477–478. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45848-4_54CrossRefGoogle Scholar
  6. 6.
    Bhatti, N., Hassan, W., McClatchey, R., Martin, P., Kovacs, Z.: Object serialization and deserialization using XML. Advances in Data Management, vol. 1 (2000)Google Scholar
  7. 7.
    Bonifati, A., Fletcher, G., Voigt, H., Yakovets, N.: Querying graphs. In: Synthesis Lectures on Data Management. Morgan & Claypool Publishers (2018).  https://doi.org/10.2200/S00873ED1V01Y201808DTM051CrossRefGoogle Scholar
  8. 8.
    Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for Windows: software for social network analysis (2002)Google Scholar
  9. 9.
    Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML progress report structural layer proposal. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 501–512. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45848-4_59CrossRefGoogle Scholar
  10. 10.
    Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz and dynagraph – static and dynamic graph drawing tools. In: In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software. Mathematics and Visualization, pp. 127–148. Springer, Berlin (2004).  https://doi.org/10.1007/978-3-642-18638-7_6CrossRefGoogle Scholar
  11. 11.
    Guminska, E., Zawadzka, T.: EvOLAP graph – evolution and OLAP-aware graph data model. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2018. CCIS, vol. 928, pp. 75–89. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99987-6_6CrossRefGoogle Scholar
  12. 12.
    Hartig, O.: Reconciliation of RDF* and Property Graphs. Technical reports. http://arxiv.org/abs/1409.3288 (2014)Google Scholar
  13. 13.
    Hausenblas, M., Wilde, E., Tennison, J.: URI Fragment Identifiers for the text/csv Media Type. RFC 7111, RFC Editor, January 2014. http://www.rfc-editor.org/rfc/rfc7111.txt
  14. 14.
    Heymann, S.: Gephi. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, pp. 612–625. Springer, New York (2014).  https://doi.org/10.1007/978-1-4614-6170-8_299Google Scholar
  15. 15.
  16. 16.
    Holt, R.C., Winter, A., Schürr, A.: GXL: toward a standard exchange format. In: Proceedings of the Seventh Working Conference on Reverse Engineering, pp. 162–171, November 2000.  https://doi.org/10.1109/WCRE.2000.891463
  17. 17.
    Kangasharju, J., Tarkoma, S.: Benefits of alternate xml serialization formats in scientific computing. In: Proceedings of the Workshop on Service-Oriented Computing Performance: Aspects, Issues, and Approaches, pp. 23–30. ACM, New York (2007).  https://doi.org/10.1145/1272457.1272461
  18. 18.
    Litman, K.: YARSpg Parser C Sharp 0.3 (GitHub), December 2018.  https://doi.org/10.5281/zenodo.2285046
  19. 19.
    Litman, K.: YARSpg-Parser-Java 0.3 (GitHub), December 2018.  https://doi.org/10.5281/zenodo.2284679
  20. 20.
    Litman, K.: YARSpg Parser Python 0.4 (GitHub), December 2018.  https://doi.org/10.5281/zenodo.2285247
  21. 21.
    Maeda, K.: Comparative survey of object serialization techniques and the programming supports. Int. J. Comput. Inf. Eng. 5(12) (2011)Google Scholar
  22. 22.
    Marton, J., Szárnyas, G., Varró, D.: Formalising openCypher graph queries in relational algebra. In: Kirikova, M., Nørvåg, K., Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 182–196. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66917-5_13CrossRefGoogle Scholar
  23. 23.
    Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf (2013)Google Scholar
  24. 24.
    Płuciennik, E., Zgorzałek, K.: The multi-model databases – a review. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2017. CCIS, vol. 716, pp. 141–152. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58274-0_12CrossRefGoogle Scholar
  25. 25.
    van Rest, O., Hong, S., Kim, J., Meng, X., Chafi, H.: PGQL: a property graph query language. In: Proceedings of the Fourth International Workshop on Graph Data Management Experiences and Systems, GRADES 2016, pp. 1–6. ACM, New York (2016).  https://doi.org/10.1145/2960414.2960421
  26. 26.
    Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bull. Am. Soc. Inf. Sci. Tech. 36(6), 35–41 (2010)CrossRefGoogle Scholar
  27. 27.
    Sumaray, A., Makki, S.K.: A comparison of data serialization formats for optimal efficiency on a mobile platform. In: Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication, pp. 1–6. ACM (2012).  https://doi.org/10.1145/2184751.2184810
  28. 28.
    Szeremeta, Ł.: YARS-PG ANTLR4 grammar (GitHub), February 2019.  https://doi.org/10.5281/zenodo.2555898
  29. 29.
    Tomaszuk, D.: RDF data in property graph model. In: Garoufallou, E., Subirats Coll, I., Stellato, A., Greenberg, J. (eds.) MTSR 2016. CCIS, vol. 672, pp. 104–115. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49157-8_9CrossRefGoogle Scholar
  30. 30.
    Tomaszuk, D., Pak, K.: Reducing vertices in property graphs. PLoS ONE 13(2), 1–25 (2018)CrossRefGoogle Scholar
  31. 31.
    Warchał, Ł.: Using Neo4j graph database in social network analysis. Stud. Informatica 33(2A), 271–279 (2012).  https://doi.org/10.21936/si2012_v33.n2A.147CrossRefGoogle Scholar
  32. 32.
    Winter, A., Kullbach, B., Riediger, V.: An overview of the GXL graph exchange language. In: Diehl, S. (ed.) Software Visualization. LNCS, vol. 2269, pp. 324–336. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45875-1_25CrossRefGoogle Scholar
  33. 33.
    Yusof, K., Man, M.: Efficiency of JSON for data retrieval in big data. Ind. J. Electr. Eng. Comput. Sci. 7, 250–262 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of InformaticsUniversity of BialystokBiałystokPoland
  2. 2.Department of Computer ScienceUniversidad de TalcaCuricóChile
  3. 3.Center for Semantic Web ResearchSantiagoChile

Personalised recommendations