Skip to main content

Abstract

Fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface were defined as deep-sea fungi, which have great potential of synthesizing novel bioactive products used in industrial, agricultural, and nutraceutical fields. With the progress of deep-sea drilling technology, many indigenous species of deep-sea fungi have been recovered using culture-dependent and culture-independent methods. Some of the deep-sea fungi can not only tolerate extreme environmental conditions, but also produce a variety of bioactive metabolites. In this review, we mainly focus on the current progress of enzymes and bioactive compounds derived from deep-sea fungi. The biodiversity of deep-sea fungi and techniques applied in deep-sea fungi study also has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Miura T, Nagahama T, Inoue A, Usami R, Horikoshi K (2001) Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23(24):2027–2034

    Article  CAS  Google Scholar 

  • Abe F, Minegishi H, Miura T, Nagahama T, Usami R, Horikoshi K (2006) Characterization of cold-and high-pressure-active polygalacturonases from a deep-sea yeast, Cryptococcus liquefaciens strain N6. Biosci Biotechnol Biochem 70(1):296–299

    Article  CAS  PubMed  Google Scholar 

  • Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123(2):132–137

    Article  CAS  PubMed  Google Scholar 

  • Batista-García RA, Sutton T, Jackson SA, Tovar-Herrera OE, Balcázar-López E, del Rayo Sánchez-Carbente M, Sánchez-Reyes A, Dobson AD, Folch-Mallol JL (2017) Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One 12(3):e0173750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burgaud G, Arzur D, Durand L, Cambon-Bonavita MA, Barbier G (2010) Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol Ecol 73(1):121–133

    CAS  PubMed  Google Scholar 

  • Chen S, Wang J, Lin X, Zhao B, Wei X, Li G, Kaliaperumal K, Liao S, Yang B, Zhou X, Liu J, Xu S, Liu Y (2016) Chrysamides A-C, three dimeric nitrophenyl trans-epoxyamides produced by the deep-sea-derived fungus Penicillium chrysogenum SCSIO41001. Org Lett 18(15):3650–3653

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wang J, Wang Z, Lin X, Zhao B, Kaliaperumal K, Liao X, Tu Z, Li J, Xu S, Liu Y (2017) Structurally diverse secondary metabolites from a deep-sea-derived fungus Penicillium chrysogenum SCSIO 41001 and their biological evaluation. Fitoterapia 117:71–78

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Zhao J, Liu D, Proksch P, Zhao Z, Lin W (2016) Eremophilane-type sesquiterpenoids from an Acremonium sp. fungus isolated from deep-sea sediments. J Nat Prod 79(4):1035–1047

    Article  CAS  PubMed  Google Scholar 

  • Daletos G, Ebrahim W, Ancheeva E, El-Neketi M, Song W, Lin W, Proksch P (2018) Natural products from deep-sea-derived fungi—a new source of novel bioactive compounds? Curr Med Chem 25(2):186–207

    Article  CAS  PubMed  Google Scholar 

  • Damare S, Raghukumar C, Muraleedharan UD, Raghukumar S (2006) Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzym Microb Technol 39(2):172–181

    Article  CAS  Google Scholar 

  • Ding H, Zhang D, Zhou B, Ma Z (2017) Inhibitors of BRD4 protein from a marine-derived fungus Alternaria sp. NH-F6. Mar Drugs 15(3):76

    Article  PubMed Central  CAS  Google Scholar 

  • Fan Z, Sun ZH, Liu Z, Chen YC, Liu HX, Li HH, Zhang WM (2016) Dichotocejpins A–C: new diketopiperazines from a deep-sea-derived fungus Dichotomomyces cejpii FS110. Mar Drugs 14(9):164

    Article  PubMed Central  CAS  Google Scholar 

  • Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the mid-Atlantic ridge hydrothermal fields near the Azores Archipelago. Microb Ecol 50(3):408–417

    Article  CAS  PubMed  Google Scholar 

  • Gao XW, Liu HX, Sun ZH, Chen YC, Tan YZ, Zhang WM (2016) Secondary metabolites from the deep-sea derived fungus Acaromyces ingoldii FS121. Molecules 21(4):371

    Article  PubMed Central  CAS  Google Scholar 

  • Gao YY, Liu QM, Liu B, Xie CI, Cao MJ, Yang XW, Liu GM (2017) Inhibitory activities of compounds from the marine Actinomycete Williamsia sp. MCCC 1A11233 variant on IgE-mediated mast cells and passive cutaneous anaphylaxis. J Agric Food Chem 65(49):10749–10756

    Article  CAS  PubMed  Google Scholar 

  • Gostinčar C, Grube M, De Hoog S, Zalar P, Gunde-Cimerman N (2009) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71(1):2–11

    Article  CAS  Google Scholar 

  • Hassan N, Rafiq M, Hayat M, Aamer AS, Fariha H (2016) Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Biotechnol 15(2):147–172

    Article  Google Scholar 

  • Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5(4):FUNK-0052-2016

    Google Scholar 

  • Höhnk W (1969) Über den pilzlichen Befall kalkiger Hartteile von Meerestieren. Bericht Deutsche Wissenschaftliche Kommission für Meeresforschung 20:129–140

    Google Scholar 

  • Huang Z, Nong X, Ren Z, Wang J, Zhang X, Qi S (2017) Anti-HSV-1, antioxidant and antifouling phenolic compounds from the deep-sea-derived fungus Aspergillus versicolor SCSIO 41502. Bioorg Med Chem Lett 27(4):787–791

    Article  CAS  PubMed  Google Scholar 

  • Lara E, Moreira D, López-García P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161(1):116–121

    Article  CAS  PubMed  Google Scholar 

  • Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8(9):2435–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Costaouëc T, Cérantola S, Ropartz D, Ratiskol J, Sinquin C, Colliec-Jouault S, Boisset C (2012) Structural data on a bacterial exopolysaccharide produced by a deep-sea Alteromonas macleodii strain. Carbohydr Polym 90(1):49–59

    Article  PubMed  CAS  Google Scholar 

  • Li XD, Li X, Li XM, Xu GM, Zhang P, Meng LH, Wang BG (2016a) Tetranorlabdane diterpenoids from the deep sea sediment-derived fungus Aspergillus wentii SD-310. Planta Med 82(9–10):877–881

    CAS  PubMed  Google Scholar 

  • Li XD, Li XM, Li X, Xu GM, Liu Y, Wang GB (2016b) Aspewentins D-H, 20-nor-isopimarane derivatives from the deep sea sediment-derived fungus Aspergillus wentii SD-310. J Nat Prod 79(5):1347–1353

    Article  CAS  PubMed  Google Scholar 

  • Li X, Li XM, Li XD, Xu GM, Liu Y, Wang BG (2016c) 20-Nor-isopimarane cycloethers from the deep-sea sediment-derived fungus Aspergillus wentii SD-310. RSC Adv 6(79):75981–75987

    Article  CAS  Google Scholar 

  • Li X, Li XD, Li HM, Xu GM, Liu Y, Wang BG (2017) Wentinoids A-F, six new isopimarane diterpenoids from Aspergillus wentii SD-310, a deep-sea sediment derived fungus. RSC Adv 7(8):4387–4394

    Article  CAS  Google Scholar 

  • Liang X, Zhang XY, Nong XH, Wang J, Huang ZH, Qi SH (2016) Eight linear peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. Tetrahedron 72(22):3092–3097

    Article  CAS  Google Scholar 

  • Lin X, Wu Q, Yu Y, Liang Z, Liu Y, Zhou L, Tang L, Zhou X (2017) Penicilliumin B, a novel sesquiterpene methylcyclopentenedione from a deep sea-derived Penicillium strain with renoprotective activities. Sci Rep 7(1):10757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu CH, Xin H, Tian-Ning X, Duan N, Ya-Rong X, Tan-Xi Z, Mark L, Kai-Uwe H, Fumio I (2017) Exploration of cultivable fungal communities in deep coal-bearing sediments from 1.3 to 2.5 km below the ocean floor. Environ Microbiol 19(2):803–818

    Article  CAS  PubMed  Google Scholar 

  • Ma XH, Zheng WM, Sun KH, Gu XF, Zeng XM, Zhang HT, Zhong TH, Shao ZZ, Zhang YH (2019) Two new phenylspirodrimanes from the deep-sea derived fungus Stachybotrys sp. MCCC 3A00409. Nat Prod Res 33:386–392

    Article  PubMed  CAS  Google Scholar 

  • Matsuo H, Nonaka K, Nagano Y, Yabuki A, Fujikura K, Takahashi Y, Ōmura S, Nakashima T (2018) New metabolites, sarcopodinols A and B, isolated from deep-sea derived fungal strain Sarcopodium sp. FKJ-0025. Biosci Biotechnol Biochem 82:1323–1326. https://doi.org/10.1080/09168451.2018.1467264

    Article  CAS  PubMed  Google Scholar 

  • Mayer A, Rodríguez AD, Taglialatela-Scafati O, Fusetani N (2013) Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs 11(7):2510–2573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miura T, Abe F, Inoue A, Usami R, Horikoshi K (2001) Purification and characterization of novel extracellular endopolygalacturonases from a deep-sea yeast, Cryptococcus sp. N6, isolated from the Japan Trench. Biotechnol Lett 23(21):1735–1739

    Article  CAS  Google Scholar 

  • Mueller G, Schmit J (2006) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1–5

    Article  Google Scholar 

  • Nagahama T, Nagano Y (2012) Cultured and uncultured fungal diversity in deep-sea environments. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, pp 173–187

    Chapter  Google Scholar 

  • Nagahama T, Hamamoto M, Horikoshi K (2006) Rhodotorula pacifica sp. nov., a novel yeast species from sediment collected on the deep-sea floor of the north-west Pacific Ocean. Int J Syst Evol Microbiol 56(1):295–299

    Article  CAS  PubMed  Google Scholar 

  • Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13(8):2359–2370

    Article  CAS  PubMed  Google Scholar 

  • Nagano Y, Nagahama T (2012) Fungal diversity in deep-sea extreme environments. Fungal Ecol 5(4):463–471

    Article  Google Scholar 

  • Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J, Takai K, Horikoshi K (2010) Fungal diversity in deep-sea sediments—the presence of novel fungal groups. Fungal Ecol 3(4):316–325

    Article  Google Scholar 

  • Nagano Y, Miura T, Nishi S, Lima AO, Nakayama C, Pellizari VH, Fujikura K (2017) Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau. Deep Sea Res II 146:59–67

    Article  Google Scholar 

  • Navarri M, Jégou C, Bondon A, Pottier S, Bach S, Baratte B, Ruchaud S, Barbier G, Burgaud G, Fleury Y (2017) Bioactive metabolites from the feep subseafloor fungus Oidiodendron griseum UBOCC-A-114129. Mar Drugs 15(4):111

    Article  PubMed Central  CAS  Google Scholar 

  • Niu S, Si L, Liu D, Zhou A, Zhang Z, Shao Z, Wang S, Zhang L, Zhou D, Lin W (2016) Spiromastilactones: a new class of influenza virus inhibitors from deep-sea fungus. Eur J Med Chem 108:229–244

    Article  CAS  PubMed  Google Scholar 

  • Niu S, Liu D, Shao Z, Proksch P, Lin W (2017a) Eutypellazines N−S, new thiodiketopiperazines from a deep sea sediment derived fungus Eutypella sp. with anti-VRE activities. Tetrahedron Lett 58(38):3695–3699

    Article  CAS  Google Scholar 

  • Niu S, Fan ZW, Xie CL, Liu Q, Luo ZH, Liu G, Yang XW (2017b) Spirograterpene A, a tetracyclic spiro-diterpene with a fused 5/5/5/5 ring system from the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475. J Nat Prod 80(7):2174–2177

    Article  CAS  PubMed  Google Scholar 

  • Niu S, Xie CL, Zhong T, Xu W, Luo ZH, Shao Z, Yang XW (2017c) Sesquiterpenes from a deep-sea-derived fungus Graphostroma sp. MCCC 3A00421. Tetrahedron 73(52):7267–7273

    Article  CAS  Google Scholar 

  • Niu S, Xie CL, Xia JM, Luo ZH, Shao Z, Yang XW (2018a) New anti-inflammatory guaianes from the Atlantic hydrotherm-derived fungus Graphostroma sp. MCCC 3A00421. Sci Rep 8(1):530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niu S, Liu Q, Xia JM, Xie CL, Luo ZH, Shao Z, Liu GM, Yang XW (2018b) Polyketides from the deep-sea-derived fungus Graphostroma sp. MCCC 3A00421 showed potent anti-food allergic activities. J Agric Food Chem 66(6):1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Niu S, Wang N, Xie CL, Fan Z, Luo Z, Chen HF, Yang XW (2018c) Roquefortine J, a novel roquefortine alkaloid, from the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475. J Antibiot 71:658–661. https://doi.org/10.1038/s41429-018-0046-y

    Article  CAS  Google Scholar 

  • Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar Biotechnol 13(1):1–11

    Article  CAS  Google Scholar 

  • Plecha S, Hall D, Tiquia-Arashiro SM (2013) Screening and characterization of soil microbes capable of degrading cellulose from switchgrass (Panicum virgatum L.). Environ Technol 34:1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Raghukumar C, Raghukumar S (1998) Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat Microb Ecol 15(2):153–163

    Article  Google Scholar 

  • Raghukumar C, Nagarkar S, Raghukumar S (1992) Association of thraustochytrids and fungi with living marine algae. Mycol Res 96(7):542–546

    Article  Google Scholar 

  • Raghukumar C, Raghukumar S, Sheelu G, Gupta S, Nath BN, Rao B (2004) Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep Sea Res I 51(11):1759–1768

    Article  CAS  Google Scholar 

  • Redou V, Navarri M, Meslet-Cladiere L, Barbier G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81(10):3571–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth JF, Orpurt P, Ahearn DG (1964) Occurrence and distribution of fungi in a subtropical marine environment. Can J Bot 42(4):375–383

    Article  Google Scholar 

  • Shang Z, Li X, Meng L, Li C, Gao S, Huang C, Wang B (2012) Chemical profile of the secondary metabolites produced by a deep-sea sediment-derived fungus Penicillium commune SD-118. Chin J Oceanol Limnol 30(2):305–314

    Article  CAS  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach. Microb Ecol 61(3):507–517

    Article  CAS  PubMed  Google Scholar 

  • Sun HH, Mao WJ, Chen Y, Guo SD, Li HY, Qi XH, Chen YL, Xu J (2009) Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydr Polym 78(1):117–124

    Article  CAS  Google Scholar 

  • Sun YL, Zhang XY, Nong XH, Xu XY, Qi SH (2016) New antifouling macrodiolides from the deep-sea-derived fungus Trichobotrys effuse DFFSCS021. Tetrahedron Lett 57(3):366–370

    Article  CAS  Google Scholar 

  • Swathi J, Narendra K, Sowjanya KM, Satya AK (2013) Evaluation of biologically active molecules isolated from obligate marine fungi. Mintage J Pharm Med Sci 2:45–47

    Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152(2):279–285

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A (2014) Global diversity and geography of soil fungi. Science 346(6213):1256688

    Article  PubMed  CAS  Google Scholar 

  • Thaler AD, Van Dover CL, Vilgalys R (2012) Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecol 5(2):270–273

    Article  Google Scholar 

  • Tiquia SM, Mormile M (2010) Extremophiles—a source of innovation for industrial and environmental applications. Environ Technol 31(8–9):823

    Article  CAS  PubMed  Google Scholar 

  • Tiquia-Arashiro SM (2012) Molecular biological technologies for ocean sensing. Humana Press, Totowa, NJ, 295 p

    Book  Google Scholar 

  • Wang YT, Xue YR, Liu CH (2015) A brief review of bioactive metabolites derived from deep-sea fungi. Mar Drugs 13(8):4594–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, He W, Huang X, Tian X, Liao S, Yang B, Wang F, Zhou X, Liu Y (2016) Antifungal new oxepine-containing alkaloids and xanthones from the deep-sea-derived fungus Aspergillus versicolor SCSIO 05879. J Agric Food Chem 64(14):2910–2916

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Li S, Chen Z, Li Z, Liao Y, Chen J (2017a) Secondary metabolites produced by the deep-sea-derived fungus Engyodontium album. Chem Nat Compd 53(2):224–226

    Article  CAS  Google Scholar 

  • Wang JW, Xu W, Zhong TH, He GY, Luo ZH (2017b) Degradation of dimethyl phthalate esters by a filamentous fungus Aspergillus versicolor isolated from deep-sea sediments. Bot Mar 60:351

    Article  CAS  Google Scholar 

  • Wang W, Liao Y, Chen R, Hou Y, Ke W, Zhang B, Gao M, Shao Z, Chen J, Li F (2018a) Chlorinated azaphilone pigments with antimicrobial and cytotoxic activities isolated from the deep sea derived fungus Chaetomium sp. NA-S01-R1. Mar Drugs 16:61

    Article  PubMed Central  CAS  Google Scholar 

  • Wang W, Chen R, Luo Z, Wang W, Chen R (2018b) Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor. Nat Prod Res 32(5):558–563

    Article  PubMed  CAS  Google Scholar 

  • Wang JF, Zhou LM, Chen ST, Yang B, Liao SR, Kong FD, Lin XP, Wang FZ, Zhou XF, Liu YH (2018c) New chlorinated diphenyl ethers and xanthones from a deep-sea-derived fungus Penicillium chrysogenum SCSIO 41001. Fitoterapia 125:49–54

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Sun X, Yu G, Wang W, Zhu T, Gu Q, Li D (2014) Cladosins A–E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum. J Nat Prod 77(2):270–275

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Wiese J, Schmaljohann R, Imhoff JF (2016) Biscogniauxone, a new isopyrrolonaphthoquinone compound from the fungus Biscogniauxia mediterranea isolated from deep-sea sediments. Mar Drugs 14(11):204

    Article  PubMed Central  CAS  Google Scholar 

  • Wu YH, Zhang ZH, Zhong Y, Huang JJ, Li XX, Jiang JY, Deng YY, Zhang LH, He F (2017) Sumalactones A-D, four new curvularin-type macrolides from a marine deep sea fungus Penicillium sumatrense. RSC Adv 7(63):40015–40019

    Article  CAS  Google Scholar 

  • Xu W, Luo ZH, Guo S, Pang KL (2016) Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions. Deep Sea Res I 109:51–60

    Article  CAS  Google Scholar 

  • Xu X, Zhang X, Nong X, Wang J, Qi S (2017) Brevianamides and mycophenolic acid derivatives from the deep-sea-derived fungus Penicillium brevicompactum DFFSCS025. Mar Drugs 15(2):43

    Article  PubMed Central  CAS  Google Scholar 

  • Yan MX, Wao WJ, Liu X, Wang SY, Xia Z, Cao SJ, Li J, Qin L, Xian HL (2016) Extracellular polysaccharide with novel structure and antioxidant property produced by the deep-sea fungus Aspergillus versicolor N2bc. Carbohydr Polym 147:272–281

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Zhang Y, Xu XY, Qi SH (2013) Diverse deep-sea fungi from the South China Sea and their antimicrobial activity. Curr Microbiol 67(5):525–530

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Tang GI, Xu XY, Nong XH, Qi SH (2014) Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS One 9(10):e109118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang XY, Wang GH, Xu XY, Nong XH, Wang J, Amin M, Qi SH (2016a) Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing. Deep-Sea Res I 116:99–105

    Article  Google Scholar 

  • Zhang Z, Min X, Huang J, Zhong Y, Wu Y, Li X, Deng Y, Jiang Z, Shao Z, Zhang L, He F (2016b) Cytoglobosins H and I, new antiproliferative cytochalasans from deep-sea-derived fungus Chaetomium globosum. Mar Drugs 14(12):233

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC (41773083, 31471810, and 31272081) and the National Key R&D Program of China (2017YFD0800705 and 2017YFC0506005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arifeen, M.Z.U., Xue, YR., Liu, CH. (2019). Deep-Sea Fungi: Diversity, Enzymes, and Bioactive Metabolites. In: Tiquia-Arashiro, S., Grube, M. (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, Cham. https://doi.org/10.1007/978-3-030-19030-9_17

Download citation

Publish with us

Policies and ethics