Skip to main content

Chemistry and Catalysis of MXenes

  • 4594 Accesses

Abstract

This chapter discusses chemical properties of MXenes focusing on the potential catalytic properties of these materials that can enable chemical transformations of relevance for achieving a sustainable energy future. First, we give an overview of the status of this new field providing a summary of where MXenes have been studied both experimentally and theoretically as catalyst materials as well as where discovery has benefited from a combined computational-experimental approach. We exemplify the combined computational-experimental approach and the crucial impact of a feedback loop between the two by using the hydrogen evolution reaction. When it comes to modeling, we describe how we can use high-throughput computational screening approaches to calculate reactivity and activity properties based on fundamental insight and understanding established prior to the screening process which in turn can be used to identify MXene candidate materials for specific chemical transformations. The chapter is concluded by providing some directions on how we could proceed discovery of new multicomponent MXene materials for chemical transformations.

Keywords

  • Chemical transformations
  • Catalysis
  • Electrocatalysis
  • Hydrogen evolution reaction
  • Basal plane functionalization
  • Computational chemistry

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-19026-2_23
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-19026-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 23.1
Fig. 23.2
Fig. 23.3
Fig. 23.4
Fig. 23.5
Fig. 23.6
Fig. 23.7
Fig. 23.8

References

  1. Seh, Z. W., et al. (2016). Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 1, 589–594.

    CrossRef  CAS  Google Scholar 

  2. Gao, G., & Du, A. (2017). 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catalysis, 7, 494–500.

    CrossRef  CAS  Google Scholar 

  3. Fredrickson, K. D., Anasori, B., Seh, Z. W., Gogotsi, Y., & Vojvodic, A. (2016). Effects of applied potential and water intercalation on the surface chemistry of Ti2C and Mo2C MXenes. Journal of Physical Chemistry C, 120, 28432–22844.

    CrossRef  CAS  Google Scholar 

  4. Handoko, A. D., et al. (2018). Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Applied Energy Materials, 1, 173–180.

    CrossRef  CAS  Google Scholar 

  5. Shao, M., et al. (2017). Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 5, 16748–16756.

    CrossRef  CAS  Google Scholar 

  6. Yuan, W., et al. (2018). MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustainable Chemistry & Engineering, 6, 8976–8982.

    CrossRef  CAS  Google Scholar 

  7. Li, S., et al. (2018). Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy, 47, 512–518.

    CrossRef  CAS  Google Scholar 

  8. Jiang, W., et al. (2018). Universal descriptor for large-scale screening of high-performance MXene-based materials for energy storage and conversion. Chemistry of Materials, 30, 2687–2693.

    CrossRef  CAS  Google Scholar 

  9. Ran, J., et al. (2017). Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 8, 13907.

    CrossRef  CAS  Google Scholar 

  10. Wang, H., et al. (2016). Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem, 9, 1490–1497.

    CrossRef  CAS  Google Scholar 

  11. Boudart, M., Delbouille, A., Dumesic, J. A., Khammouma, S., & Topsøe, H. (1975). Surface, catalytic and magnetic properties of small iron particles. I. Preparation and characterization of samples. Journal of Catalysis, 37, 486–502.

    CrossRef  CAS  Google Scholar 

  12. Pandey, M., & Thygesen, K. S. (2017). Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study. Journal of Physical Chemistry C, 121, 13593–13598.

    CrossRef  CAS  Google Scholar 

  13. Li, P., et al. (2018). High-throughput theoretical optimization of hydrogen evolution reaction on MXenes by transition metal modification. Journal of Materials Chemistry A, 6, 4271–4278.

    CrossRef  CAS  Google Scholar 

  14. Pan, H. (2016). Ultra-high electrochemical catalytic activity of MXenes. Scientific Reports, 6, 32531.

    CrossRef  CAS  Google Scholar 

  15. Tran, M. H., et al. (2018). Adding a new member to the MXene family: Synthesis, structure and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx. ACS Applied Energy Materials, 8, 3908–3914.

    Google Scholar 

  16. Su, T., et al. (2018). One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem, 11, 688–699.

    CrossRef  CAS  Google Scholar 

  17. Xiu, L., Wang, Z., Yu, M., Wu, X., & Qiu, J. (2018). Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano, 8, 8017–8028.

    Google Scholar 

  18. Junkaew, A., & Arróyave, R. (2018). Enhancement of the selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via oxygen-functionalization: promising materials for gas-sensing and -separation. Physical Chemistry Chemical Physics, 20, 6073–6082.

    CrossRef  CAS  Google Scholar 

  19. Guo, Z., Zhou, J., Zhu, L., & Sun, Z. (2016). MXene: a promising photocatalyst for water splitting. Journal of Materials Chemistry A, 4, 11446–11452.

    CrossRef  CAS  Google Scholar 

  20. Ma, T. Y., Cao, J. L., Jaroniec, M., & Qiao, S. Z. (2016). Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angewandte Chemie International Edition, 55, 1138–1142.

    CrossRef  CAS  Google Scholar 

  21. Wang, H., et al. (2017). Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions. Carbon (New York), 114, 628–634.

    CAS  Google Scholar 

  22. Xie, X., Chen, S., Ding, W., Nie, Y., & Wei, Z. (2013). An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2(X = OH, F) nanosheets for oxygen reduction reaction. Chemical Communications, 49, 10112–10114.

    CrossRef  CAS  Google Scholar 

  23. Zhang, Z., et al. (2016). Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustainable Chemistry & Engineering, 4, 6763–6771.

    CrossRef  CAS  Google Scholar 

  24. Azofra, L. M., Li, N., MacFarlane, D. R., & Sun, C. (2016). Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy & Environmental Science, 9, 2545–2549.

    CrossRef  CAS  Google Scholar 

  25. Shao, M., et al. (2018). Efficient nitrogen fixation to ammonia on MXenes. Physical Chemistry Chemical Physics, 20, 14504–14512.

    CrossRef  CAS  Google Scholar 

  26. Handoko, A. D., Khoo, K. H., Tan, T. L., Jin, H., & Seh, Z. W. (2018). Establishing new scaling relations on two-dimensional MXenes for CO2 electroreduction. Journal of Materials Chemistry A, 6, 21885–21890.

    Google Scholar 

  27. Li, N., et al. (2017). Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano, 11, 10825–10833.

    CrossRef  CAS  Google Scholar 

  28. Morales-garcía, Á., Fernández-fernández, A., Viñes, F., & Illas, F. (2018). CO2 abatement by two-dimensional MXene carbides. Journal of Materials Chemistry A, 6, 3381–3385.

    CrossRef  Google Scholar 

  29. Zhang, X., et al. (2016). A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. Journal of Materials Chemistry A, 4, 4871–4876.

    CrossRef  CAS  Google Scholar 

  30. Cheng, C., Zhang, X., Wang, M., Wang, S., & Yang, Z. (2018). Single Pd atomic catalyst on Mo2CO2 monolayer (MXene): unusual activity for CO oxidation by trimolecular Eley–Rideal mechanism. Physical Chemistry Chemical Physics, 20, 3504–3513.

    CrossRef  CAS  Google Scholar 

  31. Li, X., Fan, G., & Zeng, C. (2014). Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 39, 14927–14934.

    CrossRef  CAS  Google Scholar 

  32. Ming, M., et al. (2017). Promoted effect of alkalization on the catalytic performance of Rh/alk-Ti3C2X2(X = O, F) for the hydrodechlorination of chlorophenols in base-free aqueous medium. Applied Catalysis B: Environmental, 210, 462–469.

    CrossRef  CAS  Google Scholar 

  33. Liu, T., Wang, Q., Yuan, J., Zhao, X., & Gao, G. (2018). Highly dispersed bimetallic nanoparticles supported on titanium carbides for remarkable hydrogen release from hydrous hydrazine. ChemCatChem, 10, 2200.

    CrossRef  CAS  Google Scholar 

  34. Gao, Y., et al. (2014). Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate. Solid State Sciences, 35, 62–65.

    CrossRef  CAS  Google Scholar 

  35. Zou, G., et al. (2017). Synthesis of nanoflower-shaped MXene derivative with unexpected catalytic activity for dehydrogenation of sodium alanates. ACS Applied Materials & Interfaces, 9, 7611–7618.

    CrossRef  CAS  Google Scholar 

  36. Fan, Y., et al. (2018). Two-dimensional MXene/A-TiO2 composite with unprecedented catalytic activation for sodium alanate. Catalysis Today, 318, 167–174.

    CrossRef  CAS  Google Scholar 

  37. Wu, R., et al. (2016). Remarkably improved hydrogen storage properties of NaAlH4 doped with 2D titanium carbide. Journal of Power Sources, 327, 519–525.

    CrossRef  CAS  Google Scholar 

  38. Ye, M., Wang, X., Liu, E., Ye, J., & Wang, D. (2018). Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst. ChemSusChem, 11, 1606–1611.

    CrossRef  CAS  Google Scholar 

  39. Low, J., Zhang, L., Tong, T., Shen, B., & Yu, J. (2018). TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. Journal of Catalysis, 361, 255–266.

    CrossRef  CAS  Google Scholar 

  40. Lin, H., Wang, X., Yu, L., Chen, Y., & Shi, J. (2017). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 17, 384–391.

    CrossRef  CAS  Google Scholar 

  41. Zhang, H., et al. (2016). Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. Journal of Materials Chemistry A, 4, 12913–12920.

    CrossRef  CAS  Google Scholar 

  42. Zhang, X., et al. (2017). Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. Journal of Materials Chemistry A, 5, 12899–12903.

    CrossRef  CAS  Google Scholar 

  43. Cao, S., Shen, B., Tong, T., Fu, J., & Yu, J. (2018). 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Advanced Functional Materials, 28, 1800136.

    CrossRef  CAS  Google Scholar 

  44. Hinnemann, B., et al. (2005). Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. Journal of the American Chemical Society, 127, 5308–5309.

    CrossRef  CAS  Google Scholar 

  45. Hu, T., et al. (2017). Chemical origin of termination-functionalized MXenes: Ti3C2T2 as a case study. Journal of Physical Chemistry C, 121, 19254–19261.

    CrossRef  CAS  Google Scholar 

  46. Srivastava, P., Mishra, A., Mizuseki, H., Lee, K. R., & Singh, A. K. (2016). Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2MXene. ACS Applied Materials & Interfaces, 8, 24256–24264.

    CrossRef  CAS  Google Scholar 

  47. Hope, M. A., et al. (2016). NMR reveals the surface functionalisation of Ti3C2 MXene. Physical Chemistry Chemical Physics, 18, 5099–5102.

    CrossRef  CAS  Google Scholar 

  48. Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 26, 992–1005.

    CrossRef  CAS  Google Scholar 

  49. Gogotsi, Y., & Barsoum, M. W. (2012). Two-dimensional transition metal carbides. ACS Nano, 6, 1322–1331.

    CrossRef  CAS  Google Scholar 

  50. Nørskov, J. K., et al. (2005). Trends in the exchange current for hydrogen evolution. Journal of the Electrochemical Society, 152, J23–J26.

    CrossRef  CAS  Google Scholar 

  51. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J., & Nørskov, J. K. (2010). How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & Environmental Science, 3, 1311.

    CrossRef  CAS  Google Scholar 

  52. Rossmeisl, J., Logadottir, A., & Nørskov, J. K. (2005). Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 319, 178–184.

    CrossRef  CAS  Google Scholar 

  53. Parsons, R. (1958). The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Transactions of the Faraday Society, 54, 1053–1063.

    CrossRef  CAS  Google Scholar 

  54. Kibsgaard, J., et al. (2015). Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy & Environmental Science, 8, 3022–3029.

    CrossRef  CAS  Google Scholar 

  55. Greeley, J., & Mavrikakis, M. (2004). Alloy catalysts designed from first principles. Nature Materials, 3, 810–815.

    CrossRef  CAS  Google Scholar 

  56. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I., & Nørskov, J. K. (2006). Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 5, 909–913.

    CrossRef  CAS  Google Scholar 

  57. Ling, C., Shi, L., Ouyang, Y., & Wang, J. (2016). Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chemistry of Materials, 28, 9026–9032.

    CrossRef  CAS  Google Scholar 

  58. Soundiraraju, B., & George, B. K. (2017). Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano, 11, 8892–8900.

    CrossRef  CAS  Google Scholar 

  59. Urbankowski, P., et al. (2017). 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale, 9, 17722–17730.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Vojvodic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, L.R., Vojvodic, A. (2019). Chemistry and Catalysis of MXenes. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_23

Download citation