Skip to main content

MXenes for Supercapacitor Application

  • Chapter
  • First Online:

Abstract

Being one of the key applications of MXenes, MXene-based supercapacitors attracted huge attention for their superior electrochemical performance. In this section, an overview of MXenes as supercapacitor electrodes in various electrolytes is discussed as well as strategies for improving their performance. In aqueous electrolytes, MXenes exhibit capacitive behavior in neutral and alkaline electrolytes, while a pseudocapacitive behavior was observed in acidic electrolytes, resulting in ultrahigh capacitance values up to 370 F g−1 (1500 F cm−3). Studies were extended to nonaqueous electrolytes to achieve large voltage windows (up to 3 V), but were limited by low capacitance values. The effects of surface chemistry on energy storage in MXenes are also discussed. In addition, composite MXene electrodes have been developed to increase the electrical conductivity, the mechanical robustness, or surface accessibility of MXenes. Lastly, MXene-based supercapacitor devices including hybrid, all-solid-state, and micro-supercapacitors are introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Ethyl-methyl-imidazole, tri-fluoro-sulfonyl-imide

References

  1. Simon, P., Gogotsi, Y., & Dunn, B. (2014). Where do batteries end and supercapacitors begin? Science, 343(6176), 1210–1211.

    Article  CAS  Google Scholar 

  2. Béguin, F., Presser, V., Balducci, A., & Frackowiak, E. (2014). Carbons and electrolytes for advanced supercapacitors. Advanced Materials, 26(14), 2219–2251.

    Article  CAS  Google Scholar 

  3. Boisset, A., Athouël, L., Jacquemin, J., Porion, P., Brousse, T., & Anouti, M. (2013). Comparative performances of cirnessite and cryptomelane MnO2 as electrode material in neutral aqueous lithium salt for supercapacitor application. The Journal of Physical Chemistry C, 117(15), 7408–7422.

    Article  CAS  Google Scholar 

  4. Shimizu, W., Makino, S., Takahashi, K., Imanishi, N., & Sugimoto, W. (2013). Development of a 4.2 V aqueous hybrid electrochemical capacitor based on MnO2 positive and protected Li negative electrodes. Journal of Power Sources, 241, 572–577.

    Article  CAS  Google Scholar 

  5. Okubo, M., Hosono, E., Kim, J., Enomoto, M., Kojima, N., Kudo, T., et al. (2007). Nanosize effect on high-rate Li- ion intercalation in LiCoO2 electrode. Journal of the American Chemical Society, 129(23), 7444–7452.

    Article  CAS  Google Scholar 

  6. Galiński, M., Lewandowski, A., & Stępniak, I. (2006). Ionic liquids as electrolytes. Electrochimica Acta, 51(26), 5567–5580.

    Article  CAS  Google Scholar 

  7. Negre, L., Daffos, B., Taberna, P. L., & Simon, P. (2015). Solvent-free electrolytes for electrical double layer capacitors. Journal of the Electrochemical Society, 162(5), A5037–A5040.

    Article  CAS  Google Scholar 

  8. Neouze, M. A., Le Bideau, J., Gaveau, P., Bellayer, S., & Vioux, A. (2006). Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chemistry of Materials, 18(17), 3931–3936.

    Article  CAS  Google Scholar 

  9. Shimano, S., Zhou, H., & Honma, I. (2007). Preparation of nanohybrid solid-state electrolytes with liquidlike Mobilities by solidifying ionic liquids with silica particles. Chemistry of Materials, 19(22), 5216–5221.

    Article  CAS  Google Scholar 

  10. Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., et al. (2017). Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nature Materials, 16(4), 446–453.

    Article  CAS  Google Scholar 

  11. Forgie, J. C., & Rochefort, D. (2013). Electroactive imidazolium salts based on 1,4-dimethoxybenzene redox groups: Synthesis and electrochemical characterisation. RSC Advances, 3(30), 12035–12038.

    Article  CAS  Google Scholar 

  12. Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., et al. (2016). Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nature Materials, 16, 446.

    Article  CAS  Google Scholar 

  13. Bodin, C., Mourad, E., Zigah, D., Le Vot, S., Freunberger, S. A., Favier, F., et al. (2018). Biredox ionic liquids: New opportunities toward high performance supercapacitors. Faraday Discussions, 206(0), 393–404.

    Article  CAS  Google Scholar 

  14. Suo, L., Borodin, O., Gao, T., Olguin, M., Ho, J., Fan, X., et al. (2015). “Water-in-salt” electrolyte enables high- voltage aqueous lithium-ion chemistries. Science, 350(6263), 938–943.

    Article  CAS  Google Scholar 

  15. Gambou-Bosca, A., & Bélanger, D. (2016). Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors. Journal of Power Sources, 326, 595–603.

    Article  CAS  Google Scholar 

  16. Lannelongue, P., Bouchal, R., Mourad, E., Bodin, C., Olarte, M., le Vot, S., et al. (2018). “Water-in-salt” for supercapacitors: A compromise between voltage, power density, energy density and stability. Journal of the Electrochemical Society, 165(3), A657–A663.

    Article  CAS  Google Scholar 

  17. Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2(2), 16098.

    Article  CAS  Google Scholar 

  18. Lukatskaya, M. R., Mashtalir, O., Ren, C. E., Dall’Agnese, Y., Rozier, P., Taberna, P. L., et al. (2013). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341(6153), 1502–1505.

    Article  CAS  Google Scholar 

  19. Levi, M. D., Lukatskaya, M. R., Sigalov, S., Beidaghi, M., Shpigel, N., Daikhin, L., et al. (2015). Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Advanced Energy Materials, 5(1), 1400815.

    Article  CAS  Google Scholar 

  20. Come, J., Black, J. M., Lukatskaya, M. R., Naguib, M., Beidaghi, M., Rondinone, A. J., et al. (2015). Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy, 17, 27–35.

    Article  CAS  Google Scholar 

  21. Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., & Barsoum, M. W. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516(7529), 78–81.

    Article  CAS  Google Scholar 

  22. Lukatskaya, M. R., Bak, S.-M., Yu, X., Yang, X.-Q., Barsoum, M. W., & Gogotsi, Y. (2015). Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Advanced Energy Materials, 5(15), 1500589.

    Article  CAS  Google Scholar 

  23. Hu, M., Li, Z., Hu, T., Zhu, S., Zhang, C., & Wang, X. (2016). High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano, 10(12), 11344–11350.

    Article  CAS  Google Scholar 

  24. Zhan, C., Naguib, M., Lukatskaya, M., Kent, P. R. C., Gogotsi, Y., & D-e, J. (2018). Understanding the MXene pseudocapacitance. The Journal of Physical Chemistry Letters, 9(6), 1223–1228.

    Article  CAS  Google Scholar 

  25. Lukatskaya, M. R., Kota, S., Lin, Z., Zhao, M.-Q., Shpigel, N., Levi, M. D., et al. (2017). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2(8), 17105.

    Article  CAS  Google Scholar 

  26. Mashtalir, O., Naguib, M., Mochalin, V. N., Dall’Agnese, Y., Heon, M., Barsoum, M. W., et al. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.

    Article  CAS  Google Scholar 

  27. Halim, J., Cook, K. M., Naguib, M., Eklund, P., Gogotsi, Y., Rosen, J., et al. (2016). X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Applied Surface Science, 362, 406–417.

    Article  CAS  Google Scholar 

  28. Zha, X. H., Luo, K., Li, Q. W., Huang, Q., He, J., Wen, X. D., et al. (2015). Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. EPL, 111(2), 26007.

    Article  CAS  Google Scholar 

  29. Xie, Y., Naguib, M., Mochalin, V. N., Barsoum, M. W., Gogotsi, Y., Yu, X., et al. (2014). Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. Journal of the American Chemical Society, 136(17), 6385–6394.

    Article  CAS  Google Scholar 

  30. Dall’Agnese, Y., Lukatskaya, M. R., Cook, K. M., Taberna, P. L., Gogotsi, Y., & Simon, P. (2014). High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochemistry Communications, 48, 118–122.

    Article  CAS  Google Scholar 

  31. Hope, M. A., Forse, A. C., Griffith, K. J., Lukatskaya, M. R., Ghidiu, M., Gogotsi, Y., et al. (2016). NMR reveals the surface functionalisation of Ti3C2 MXene. Physical Chemistry Chemical Physics, 18(7), 5099–5102.

    Article  CAS  Google Scholar 

  32. Ingemar, P., Lars-Åke, N., Joseph, H., Michel, W. B., Vanya, D., Justinas, P., et al. (2018). On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Materials, 5(1), 015002.

    Google Scholar 

  33. Li, J., Yuan, X., Lin, C., Yang, Y., Xu, L., Du, X., et al. (2017). Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Advanced Energy Materials, 7(15), 1602725.

    Article  CAS  Google Scholar 

  34. Yoon, Y., Lee, M., Kim, S. K., Bae, G., Song, W., Myung, S., et al. (2018). A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes. Advanced Energy Materials, 8(15), 1703173.

    Article  CAS  Google Scholar 

  35. Wen, Y., Rufford, T. E., Chen, X., Li, N., Lyu, M., Dai, L., et al. (2017). Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy, 38, 368–376.

    Article  CAS  Google Scholar 

  36. Sang, X., Xie, Y., Lin, M.-W., Alhabeb, M., Van Aken, K. L., Gogotsi, Y., et al. (2016). Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano. 10 9193–9200.

    Google Scholar 

  37. Tao, Q., Dahlqvist, M., Lu, J., Kota, S., Meshkian, R., Halim, J., et al. (2017). Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nature Communications, 8, 14949.

    Article  Google Scholar 

  38. Dall’Agnese, Y., Rozier, P., Taberna, P.-L., Gogotsi, Y., & Simon, P. (2016). Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. Journal of Power Sources, 306, 510–515.

    Article  CAS  Google Scholar 

  39. Lin, Z., Barbara, D., Taberna, P.-L., Van Aken, K. L., Anasori, B., Gogotsi, Y., et al. (2016). Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. Journal of Power Sources, 326, 575–579.

    Article  CAS  Google Scholar 

  40. Lin, Z., Rozier, P., Duployer, B., Taberna, P.-L., Anasori, B., Gogotsi, Y., et al. (2016). Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochemistry Communications, 72, 50–53.

    Article  CAS  Google Scholar 

  41. Jäckel, N., Krüner, B., Van Aken, K. L., Alhabeb, M., Anasori, B., Kaasik, F., et al. (2016). Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids. ACS Applied Materials & Interfaces, 8(47), 32089–32093.

    Article  CAS  Google Scholar 

  42. Xu, K., Lin, Z., Merlet, C., Taberna, P. L., Miao, L., Jiang, J., et al. (2018). Tracking ionic rearrangements and interpreting dynamic volumetric changes in two-dimensional metal carbide supercapacitors: A molecular dynamics simulation study. ChemSusChem, 11(12), 1892–1899.

    Article  CAS  Google Scholar 

  43. Conway, B. E., Birss, V., & Wojtowicz, J. (1997). The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources, 66(1–2), 1–14.

    Article  CAS  Google Scholar 

  44. Zhu, K., Zhang, H., Ye, K., Zhao, W., Yan, J., Cheng, K., et al. (2017). Two-dimensional titanium carbide MXene as a capacitor-type electrode for rechargeable aqueous Li-ion and Na-ion capacitor batteries. ChemElectroChem, 4(11), 3018–3025.

    Article  CAS  Google Scholar 

  45. Ling, Z., Ren, C. E., Zhao, M.-Q., Yang, J., Giammarco, J. M., Qiu, J., et al. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111(47), 16676–16681.

    Article  CAS  Google Scholar 

  46. Xie, X., Zhao, M.-Q., Anasori, B., Maleski, K., Ren, C. E., Li, J., et al. (2016). Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 26, 513–523.

    Article  CAS  Google Scholar 

  47. Li, L., Wang, F., Zhu, J., & Wu, W. (2017). The facile synthesis of layered Ti2C MXene/carbon nanotube composite paper with enhanced electrochemical properties. Dalton Transactions, 46(43), 14880–14887.

    Article  CAS  Google Scholar 

  48. Wang, Y., Dou, H., Wang, J., Ding, B., Xu, Y., Chang, Z., et al. (2016). Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. Journal of Power Sources, 327, 221–228.

    Article  CAS  Google Scholar 

  49. Yan, P., Zhang, R., Jia, J., Wu, C., Zhou, A., Xu, J., et al. (2015). Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. Journal of Power Sources, 284, 38–43.

    Article  CAS  Google Scholar 

  50. Boota, M., Anasori, B., Voigt, C., Zhao, M.-Q., Barsoum, M. W., & Gogotsi, Y. (2016). Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 28(7), 1517–1522.

    Article  CAS  Google Scholar 

  51. Li, H., Hou, Y., Wang, F., Lohe, M. R., Zhuang, X., Niu, L., et al. (2017). Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Advanced Energy Materials, 7(4), 1601847.

    Article  CAS  Google Scholar 

  52. Luo, J., Zhang, W., Yuan, H., Jin, C., Zhang, L., Huang, H., et al. (2017). Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano, 11(3), 2459–2469.

    Article  CAS  Google Scholar 

  53. Yan, J., Ren, C. E., Maleski, K., Hatter, C. B., Anasori, B., Urbankowski, P., et al. (2017). Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Advanced Functional Materials, 27(30), 1701264.

    Article  CAS  Google Scholar 

  54. Zhu, M., Huang, Y., Deng, Q., Zhou, J., Pei, Z., Xue, Q., et al. (2016). Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Advanced Energy Materials, 6(21), 1600969.

    Article  CAS  Google Scholar 

  55. Zhao, M.-Q., Ren, C. E., Ling, Z., Lukatskaya, M. R., Zhang, C., Van Aken, K. L., et al. (2015). Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced Materials, 27(2), 339–345.

    Article  CAS  Google Scholar 

  56. Yang, Q., Xu, Z., Fang, B., Huang, T., Cai, S., Chen, H., et al. (2017). MXene/graphene hybrid fibers for high performance flexible supercapacitors. Journal of Materials Chemistry A, 5(42), 22113–22119.

    Article  CAS  Google Scholar 

  57. Zhao, C., Wang, Q., Zhang, H., Passerini, S., & Qian, X. (2016). Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS Applied Materials & Interfaces, 8(24), 15661–15667.

    Article  CAS  Google Scholar 

  58. Zhu, J., Tang, Y., Yang, C., Wang, F., & Cao, M. (2016). Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. Journal of the Electrochemical Society, 163(5), A785–A791.

    Article  CAS  Google Scholar 

  59. Lu, X., Zhu, J., Wu, W., & Zhang, B. (2017). Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochimica Acta, 228, 282–289.

    CAS  Google Scholar 

  60. Wang, F., Cao, M., Qin, Y., Zhu, J., Wang, L., & Tang, Y. (2016). ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance. RSC Advances, 6(92), 88934–88942.

    Article  CAS  Google Scholar 

  61. Rakhi, R. B., Ahmed, B., Anjum, D., & Alshareef, H. N. (2016). Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Applied Materials & Interfaces, 8(29), 18806–18814.

    Article  CAS  Google Scholar 

  62. Tang, Y., Zhu, J., Yang, C., & Wang, F. (2016). Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte. Journal of Alloys and Compounds, 685, 194–201.

    Article  CAS  Google Scholar 

  63. Zhang, C., Beidaghi, M., Naguib, M., Lukatskaya, M. R., Zhao, M.-Q., Dyatkin, B., et al. (2016). Synthesis and charge storage properties of hierarchical niobium pentoxide/carbon/niobium carbide (MXene) hybrid materials. Chemistry of Materials, 28(11), 3937–3943.

    Article  CAS  Google Scholar 

  64. Zhu, J., Lu, X., & Wang, L. (2016). Synthesis of a MoO3/Ti3C2Tx composite with enhanced capacitive performance for supercapacitors. RSC Advances, 6(100), 98506–98513.

    Article  CAS  Google Scholar 

  65. Navarro-Suárez, A. M., Van Aken, K. L., Mathis, T., Makaryan, T., Yan, J., Carretero-González, J., et al. (2018). Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochimica Acta, 259, 752–761.

    Article  CAS  Google Scholar 

  66. Xia, Q. X., Fu, J., Yun, J. M., Mane, R. S., & Kim, K. H. (2017). High volumetric energy density annealed-MXene-nickel oxide/MXene asymmetric supercapacitor. RSC Advances, 7(18), 11000–11011.

    Article  CAS  Google Scholar 

  67. Jiang, Q., Kurra, N., Alhabeb, M., Gogotsi, Y., & Alshareef, H. N. (2018). All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Advanced Energy Materials, 8(13), 1703043.

    Article  CAS  Google Scholar 

  68. Li, L., Zhang, M., Zhang, X., & Zhang, Z. (2017). New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. Journal of Power Sources, 364, 234–241.

    Article  CAS  Google Scholar 

  69. Zhao, R., Wang, M., Zhao, D., Li, H., Wang, C., & Yin, L. (2018). Molecular-level Heterostructures assembled from titanium carbide MXene and Ni–Co–Al layered double-hydroxide nanosheets for all-solid-state flexible asymmetric high-energy supercapacitors. ACS Energy Letters, 3(1), 132–140.

    Article  CAS  Google Scholar 

  70. Wang, X., Mathis, T. S., Li, K., Lin, Z., Vlcek, L., Torita, T., Osti, N. C., Hatter, C., Urbankowski, P., Sarycheva, A., Tyagi, M., Mamontov, E., Simon, P., & Gogotsi, Y. (2019). Influences from solvents on charge storage in titanium carbide MXenes. Nature Energy, 4(3), 241–248.

    Article  CAS  Google Scholar 

  71. Lu, X., Yu, M., Wang, G., Tong, Y., & Li, Y. (2014). Flexible solid-state supercapacitors: Design, fabrication and applications. Energy & Environmental Science, 7(7), 2160–2181.

    Article  Google Scholar 

  72. Peng, Y.-Y., Akuzum, B., Kurra, N., Zhao, M.-Q., Alhabeb, M., Anasori, B., et al. (2016). All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy & Environmental Science, 9(9), 2847–2854.

    Article  CAS  Google Scholar 

  73. Hu, M., Li, Z., Li, G., Hu, T., Zhang, C., & Wang, X. (2017). All-solid-state flexible fiber-based MXene supercapacitors. Advanced Materials Technologies, 2(10), 1700143.

    Article  CAS  Google Scholar 

  74. Qin, L., Tao, Q., El Ghazaly, A., Fernandez-Rodriguez, J., Persson, P. O. Å., Rosen, J., et al. (2018). High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT:PSS. Advanced Functional Materials, 28(2), 1703808.

    Article  CAS  Google Scholar 

  75. Kurra, N., Ahmed, B., Gogotsi, Y., & Alshareef, H. N. (2016). MXene-on-Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 6(24), 1601372.

    Article  CAS  Google Scholar 

  76. Zhang, C. J., Kremer, M. P., Seral-Ascaso, A., Park, S.-H., McEvoy, N., Anasori, B., et al. (2018). Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Advanced Functional Materials, 28(9), 1705506.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zifeng Lin or Patrice Simon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, Z., Simon, P. (2019). MXenes for Supercapacitor Application. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_18

Download citation

Publish with us

Policies and ethics