Skip to main content

Optical Properties of MXenes

  • Chapter
  • First Online:
2D Metal Carbides and Nitrides (MXenes)

Abstract

In the past decade, two-dimensional (2D) materials have had a significant impact on the physics and optics research community as they are observed to interact with light in a large variety of unique ways. MXenes have been added to this class of 2D in 2011. Ever since their discovery, they have been explored by a growing number of different fields of research, including optics and nanophotonics. In relation to optics, in the past few years, researchers have demonstrated a number of widely useful and interesting features of the MXenes, for example, optical transparency, plasmonic behavior, optical nonlinearity, efficient photothermal conversion, tunability of optical response, etc. These have led to application of the MXenes in functional metamaterial devices, mode-locked lasers, surface-enhanced Raman spectroscopy (SERS), photothermal therapy (PTT), and so on. In this chapter, we start by reviewing the theoretical and experimental approaches in studying the optical properties of the MXenes and then discuss the impactful optical device demonstrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451–10453.

    Article  CAS  Google Scholar 

  2. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V., & Kis, A. (2017). 2D transition metal dichalcogenides. Nature Reviews Materials, 2(8), 17033.

    Article  CAS  Google Scholar 

  3. Xia, F., Wang, H., & Jia, Y. (2014). Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 5, 4458.

    Article  CAS  Google Scholar 

  4. Koppens, F. H. L., Chang, D. E., & García de Abajo, F. J. (2011). Graphene plasmonics: A platform for strong light-matter interactions. Nano Letters, 11(8), 3370–3377.

    Article  CAS  Google Scholar 

  5. Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S. K., & Colombo, L. (2014). Electronics based on two-dimensional materials. Nature Nanotechnology, 9(10), 768–779.

    Article  CAS  Google Scholar 

  6. Xia, F., Wang, H., Xiao, D., Dubey, M., & Ramasubramaniam, A. (2014). Two-dimensional material nanophotonics. Nature Photonics, 8(12), 899–907.

    Article  CAS  Google Scholar 

  7. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.

    Article  CAS  Google Scholar 

  8. Wallace, P. R. (1947). The band theory of graphite. Physics Review, 71(9), 622–634.

    Article  CAS  Google Scholar 

  9. Fei, Z., Rodin, A. S., Andreev, G. O., Bao, W., McLeod, A. S., Wagner, M., Zhang, L. M., Zhao, Z., Thiemens, M., Dominguez, G., et al. (2012). Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 487(7405), 82–85.

    Article  CAS  Google Scholar 

  10. Pirruccio, G., Martín Moreno, L., Lozano, G., & Gómez Rivas, J. (2013). Coherent and broadband enhanced optical absorption in graphene. ACS Nano, 7(6), 4810–4817.

    Article  CAS  Google Scholar 

  11. Sun, Z., Hasan, T., Torrisi, F., Popa, D., Privitera, G., Wang, F., Bonaccorso, F., Basko, D. M., & Ferrari, A. C. (2010). Graphene mode-locked ultrafast laser. ACS Nano, 4(2), 803–810.

    Article  CAS  Google Scholar 

  12. Kim, Y. D., Kim, H., Cho, Y., Ryoo, J. H., Park, C.-H., Kim, P., Kim, Y. S., Lee, S., Li, Y., Park, S.-N., et al. (2015). Bright visible light emission from graphene. Nature Nanotechnology, 10(8), 676–681.

    Article  CAS  Google Scholar 

  13. Lui, C. H., Mak, K. F., Shan, J., & Heinz, T. F. (2010). Ultrafast photoluminescence from graphene. Physical Review Letters, 105(12), 127404.

    Article  CAS  Google Scholar 

  14. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308–1308.

    Article  CAS  Google Scholar 

  15. Blake, P., Hill, E. W., Castro Neto, A. H., Novoselov, K. S., Jiang, D., Yang, R., Booth, T. J., & Geim, A. K. (2007). Making graphene visible. Applied Physics Letters, 91(6), 63124.

    Article  CAS  Google Scholar 

  16. Xiao, D., Liu, G.-B., Feng, W., Xu, X., & Yao, W. (2012). Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 108(19), 196802.

    Article  CAS  Google Scholar 

  17. Yu, H., Liu, G.-B., Gong, P., Xu, X., & Yao, W. (2014). Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nature Communications, 5(May), 3876.

    Article  CAS  Google Scholar 

  18. Berkelbach, T. C., Hybertsen, M. S., & Reichman, D. R. (2013). Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Physical Review B, 88(4), 45318.

    Article  CAS  Google Scholar 

  19. Rodin, A. S., Carvalho, A., & Castro Neto, A. H. (2014). Excitons in anisotropic two-dimensional semiconducting crystals. Physical Review B, 90(7), 1–7.

    Article  CAS  Google Scholar 

  20. Mak, K. F., He, K., Shan, J., & Heinz, T. F. (2012). Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 7(8), 494–498.

    Article  CAS  Google Scholar 

  21. Clark, D. J., Senthilkumar, V., Le, C. T., Weerawarne, D. L., Shim, B., Jang, J. I., Shim, J. H., Cho, J., Sim, Y., Seong, M.-J., et al. (2014). Strong optical nonlinearity of CVD-grown MoS2 monolayer as probed by wavelength-dependent second-harmonic generation. Physical Review B, 90(12), 121409.

    Article  CAS  Google Scholar 

  22. Wang, R., Chien, H. C., Kumar, J., Kumar, N., Chiu, H. Y., & Zhao, H. (2014). Third-harmonic generation in ultrathin films of MoS2. ACS Applied Materials & Interfaces, 6, 314–318.

    Article  CAS  Google Scholar 

  23. Zhang, H., Lu, S. B., Zheng, J., Du, J., Wen, S. C., Tang, D. Y., & Loh, K. P. (2014). Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Optics Express, 22(6), 7249.

    Article  CAS  Google Scholar 

  24. Lagoudakis, K. G., Wouters, M., Richard, M., Baas, A., Carusotto, I., André, R., Dang, L. S., & Deveaud-Plédran, B. (2008). Quantized vortices in an exciton–polariton condensate. Nature Physics, 4(9), 706–710.

    Article  CAS  Google Scholar 

  25. Ye, Y., Wong, Z. J., Lu, X., Ni, X., Zhu, H., Chen, X., Wang, Y., & Zhang, X. (2015). Monolayer excitonic laser. Nature Photonics, 9(11), 733–737.

    Article  CAS  Google Scholar 

  26. Ye, Y., Dou, X., Ding, K., Chen, Y., Jiang, D., Yang, F., & Sun, B. (2017). Single photon emission from deep-level defects in monolayer WSe2. Physical Review B, 95(24), 245313.

    Article  Google Scholar 

  27. Ling, X., Wang, H., Huang, S., Xia, F., & Dresselhaus, M. S. (2015). The renaissance of black phosphorus. Proceedings of the National Academy of Sciences, 112(15), 201416581.

    Article  CAS  Google Scholar 

  28. Low, T., Rodin, A. S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., & Neto, A. H. C. (2014). Tunable optical properties of multilayers black phosphorus. arXiv, 75434, 1–5.

    Google Scholar 

  29. Tran, V., Soklaski, R., Liang, Y., & Yang, L. (2014). Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B, 89(23), 1–6.

    Article  CAS  Google Scholar 

  30. Qiao, J., Kong, X., Hu, Z.-X., Yang, F., & Ji, W. (2014). High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 5, 4475.

    Article  CAS  Google Scholar 

  31. Mao, N., Tang, J., Xie, L., Wu, J., Han, B., Lin, J., Deng, S., Ji, W., Xu, H., Liu, K., et al. (2016). Optical anisotropy of black phosphorus in the visible regime. Journal of the American Chemical Society, 138(1), 300–305.

    Article  CAS  Google Scholar 

  32. Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R. P., Lundstrom, M. S., Ye, P. D., & Xu, X. (2015). Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nature Communications, 6(1), 1–32.

    CAS  Google Scholar 

  33. Low, T., Rold, R., Wang, H., Xia, F., Avouris, P., & Mart, L. (2014). Plasmons and screening in monolayer and multilayer black phosphorus. Physical Review Letters, 67(12), 3–7.

    Google Scholar 

  34. Chen, Y., Jiang, G., Chen, S., Guo, Z., Yu, X., Zhao, C., Zhang, H., Bao, Q., Wen, S., Tang, D., et al. (2015). Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Optics Express, 23(10), 12823.

    Article  CAS  Google Scholar 

  35. Li, L., Wang, Y., & Wang, X. (2017). Ultrafast pulse generation with black phosphorus solution saturable absorber. Laser Physics, 27(8), 85104.

    Article  CAS  Google Scholar 

  36. Sotor, J., Sobon, G., Macherzynski, W., Paletko, P., & Abramski, K. M. (2015). Black phosphorus saturable absorber for ultrashort pulse generation. Applied Physics Letters, 107(5), 51108.

    Article  CAS  Google Scholar 

  37. Naguib, M. (2017). Chapter 4: Two-dimensional transition metal carbides and carbonitrides. In Y. Gogotsi (Ed.), Nanomaterials handbook (pp. 83–102). Boca Raton: Taylor & Francis, CRC Press.

    Chapter  Google Scholar 

  38. Naguib, M., & Gogotsi, Y. (2015). Synthesis of two-dimensional materials by selective extraction. Accounts of Chemical Research, 48(1), 128–135.

    Article  CAS  Google Scholar 

  39. Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., & Gogotsi, Y. (2017). Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 29(18), 7633–7644.

    Article  CAS  Google Scholar 

  40. Halim, J., Lukatskaya, M. R., Cook, K. M., Lu, J., Smith, C. R., Näslund, L.-Å., May, S. J., Hultman, L., Gogotsi, Y., Eklund, P., et al. (2014). Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26(7), 2374–2381.

    Article  CAS  Google Scholar 

  41. Kajiyama, S., Szabova, L., Sodeyama, K., Iinuma, H., Morita, R., Gotoh, K., Tateyama, Y., Okubo, M., & Yamada, A. (2016). Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano, 10(3), 3334–3341.

    Article  CAS  Google Scholar 

  42. Lukatskaya, M. R., Kota, S., Lin, Z., Zhao, M.-Q., Shpigel, N., Levi, M. D., Halim, J., Taberna, P.-L., Barsoum, M. W., Simon, P., et al. (2017). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 2(8), 17105.

    Article  CAS  Google Scholar 

  43. Tian, Y., Yang, C., Que, W., Liu, X., Yin, X., & Kong, L. B. (2017). Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor. Journal of Power Sources, 359, 332–339.

    Article  CAS  Google Scholar 

  44. Yang, C., Que, W., Yin, X., Tian, Y., Yang, Y., & Que, M. (2017). Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochimica Acta, 225, 416–424.

    Article  CAS  Google Scholar 

  45. Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Man Hong, S., Koo, C. M., & Gogotsi, Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137–1140.

    Article  CAS  Google Scholar 

  46. Geunchang, C., Faisal, S., Young-Mi, B., Min, J. Y., Hyunchul, P., Mohamed, A., Babak, A., Dai-Sik, K., Min, K. C., Yury, G., et al. (2018). Enhanced terahertz shielding of MXenes with nano-metamaterials. Advanced Optical Materials, 6(5), 1701076.

    Article  CAS  Google Scholar 

  47. Li, R., Zhang, L., Shi, L., & Wang, P. (2017). MXene Ti3C2 : An effective 2D light-to-heat conversion material. ACS Nano, 11(4), 3752–3759.

    Article  CAS  Google Scholar 

  48. Jhon, Y. M. I., Koo, J., Anasori, B., Seo, M., Lee, J. H., Gogotsi, Y., & Jhon, Y. M. I. (2017). Metallic MXene saturable absorber for femtosecond mode-locked lasers. Advanced Materials, 29(40), 1702496.

    Article  CAS  Google Scholar 

  49. Satheeshkumar, E., Makaryan, T., Melikyan, A., Minassian, H., Gogotsi, Y., & Yoshimura, M. (2016). One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Scientific Reports, 6(1), 32049.

    Article  CAS  Google Scholar 

  50. Sarycheva, A., Makaryan, T., Maleski, K., Satheeshkumar, E., Melikyan, A., Minassian, H., Yoshimura, M., & Gogotsi, Y. (2017). Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. Journal of Physical Chemistry C, 121(36), 19983–19988.

    Article  CAS  Google Scholar 

  51. Chaudhuri, K., Alhabeb, M., Wang, Z., Shalaev, V. M., Gogotsi, Y., & Boltasseva, A. (2018). Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics, 5(3), 1115–1122.

    Google Scholar 

  52. Dong, Y., Chertopalov, S., Maleski, K., Anasori, B., Hu, L., Bhattacharya, S., Rao, A. M., Gogotsi, Y., Mochalin, V. N., & Podila, R. (2018). Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Advanced Materials, 30(10), 1705714.

    Article  CAS  Google Scholar 

  53. Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T., & Yunoki, S. (2017). Electronic properties and applications of MXenes: A theoretical review. Journal of Materials Chemistry C, 5(10), 2488–2503.

    Article  CAS  Google Scholar 

  54. Lashgari, H., Abolhassani, M. R., Boochani, A., Elahi, S. M., & Khodadadi, J. (2014). Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations. Solid State Communications, 195, 61–69.

    Article  CAS  Google Scholar 

  55. Ambrosch-Draxl, C., & Sofo, J. O. (2006). Linear optical properties of solids within the full-potential linearized augmented planewave method. Computer Physics Communications, 175(1), 1–14.

    Article  CAS  Google Scholar 

  56. Ren, X., Rinke, P., Joas, C., & Scheffler, M. (2012). Random-phase approximation and its applications in computational chemistry and materials science. Journal of Materials Science, 47(21), 7447–7471.

    Article  CAS  Google Scholar 

  57. Fox, M. (2001). Optical properties of solids. Oxford: Oxford University Press.

    Google Scholar 

  58. Wooten, F. (1972). Optical properties of solids. New York/London: Academic Press.

    Google Scholar 

  59. Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2012). Two-dimensional transition metal carbides. ACS Nano, 6(2), 1322–1331.

    Article  CAS  Google Scholar 

  60. Zhang, X., Ma, Z., Zhao, X., Tang, Q., & Zhou, Z. (2015). Computational studies on structural and electronic properties of functionalized MXene monolayers and nanotubes. Journal of Materials Chemistry A, 3(9), 4960–4966.

    Article  CAS  Google Scholar 

  61. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248–4253.

    Article  CAS  Google Scholar 

  62. Berdiyorov, G. R. (2016). Optical properties of functionalized Ti3C2Tx (T = F, O, OH) MXene: First-principles calculations. AIP Advances, 6(5), 55105.

    Article  CAS  Google Scholar 

  63. Harrison, W. A. (1970). Solid state theory. New York: McGrawHill.

    Google Scholar 

  64. Dillon, A. D., Ghidiu, M. J., Krick, A. L., Griggs, J., May, S. J., Gogotsi, Y., Barsoum, M. W., & Fafarman, A. T. (2016). Highly conductive optical quality solution-processed films of 2D titanium carbide. Advanced Functional Materials, 26(23), 4162–4168.

    Article  CAS  Google Scholar 

  65. Hantanasirisakul, K., Zhao, M.-Q., Urbankowski, P., Halim, J., Anasori, B., Kota, S., Ren, C. E., Barsoum, M. W., & Gogotsi, Y. (2016). Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Advanced Electronic Materials, 2(6), 1600050.

    Article  CAS  Google Scholar 

  66. Lin, H., Wang, X., Yu, L., Chen, Y., & Shi, J. (2017). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 17(1), 384–391.

    Article  CAS  Google Scholar 

  67. Lin, H., Wang, Y., Gao, S., Chen, Y., & Shi, J. (2018). Theranostic 2D tantalum carbide (MXene). Advanced Materials, 30(4), 1703284.

    Article  CAS  Google Scholar 

  68. Jiang, X., Liu, S., Liang, W., Luo, S., He, Z., Ge, Y., Wang, H., Cao, R., Zhang, F., Wen, Q., et al. (2018). Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser & Photonics Reviews, 12(2), 1700229.

    Article  CAS  Google Scholar 

  69. Maier, S. A. (2007). Plasmonics: Fundamentals and applications. Boston, MA: Springer.

    Book  Google Scholar 

  70. Maier, S. a., & Atwater, H. a. (2005). Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. Journal of Applied Physics, 98(1), 11101.

    Article  CAS  Google Scholar 

  71. Mauchamp, V., Bugnet, M., Bellido, E. P., Botton, G. a., Moreau, P., Magne, D., Naguib, M., Cabioc’h, T., & Barsoum, M. W. (2014). Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects. Physical Review B, 89(23), 235428.

    Article  CAS  Google Scholar 

  72. Kumar, A., & Ahluwalia, P. K. K. (2012). Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): Effect of quantum confinement. Physica B: Condensed Matter, 407(24), 4627–4634.

    Article  CAS  Google Scholar 

  73. Boersch, H., Geiger, J., Imbusch, A., & Niedrig, N. (1966). High resolution investigation of the energy losses of 30 keV electrons in aluminum foils of various thicknesses. Physics Letters, 22(2), 146–147.

    Article  CAS  Google Scholar 

  74. Rast, L., Sullivan, T. J., & Tewary, V. K. (2013). Stratified graphene/noble metal systems for low-loss plasmonics applications. Physical Review B, 87(4), 45428.

    Article  CAS  Google Scholar 

  75. Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2013). Planar photonics with metasurfaces. Science, 339(6125), 1232009–1232009.

    Article  CAS  Google Scholar 

  76. Pors, A., Albrektsen, O., Radko, I. P., & Bozhevolnyi, S. I. (2013). Gap plasmon-based metasurfaces for total control of reflected light. Scientific Reports, 3, 2155.

    Article  Google Scholar 

  77. Jung, J., Søndergaard, T., & Bozhevolnyi, S. I. (2009). Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons. Physical Review B, 79(3), 35401.

    Article  CAS  Google Scholar 

  78. Bozhevolnyi, S. I., & Søndergaard, T. (2007). General properties of slow-plasmon resonant nanostructures: Nano-antennas and resonators. Optics Express, 15(17), 10869–10877.

    Article  CAS  Google Scholar 

  79. Boyd, R. W. (Ed.). (2008). Nonlinear optics (3rd ed.). Amsterdam/Boston: Academic Press.

    Google Scholar 

  80. Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2008). Plasmonic Photothermal Therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 23(3), 217–228.

    Article  Google Scholar 

  81. Robinson, J. T., Tabakman, S. M., Liang, Y., Wang, H., Sanchez Casalongue, H., Vinh, D., & Dai, H. (2011). Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society, 133(17), 6825–6831.

    Article  CAS  Google Scholar 

  82. Akhavan, O., & Ghaderi, E. (2013). Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small, 9(21), 3593–3601.

    Article  CAS  Google Scholar 

  83. Liu, T., Wang, C., Gu, X., Gong, H., Cheng, L., Shi, X., Feng, L., Sun, B., & Liu, Z. (2014). Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Advanced Materials, 26(21), 3433–3440.

    Article  CAS  Google Scholar 

  84. Cheng, L., Liu, J., Gu, X., Gong, H., Shi, X., Liu, T., Wang, C., Wang, X., Liu, G., Xing, H., et al. (2014). PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Advanced Materials, 26(12), 1886–1893.

    Article  CAS  Google Scholar 

  85. Lin, H., Gao, S., Dai, C., Chen, Y., & Shi, J. (2017). A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 139(45), 16235–16247.

    Article  CAS  Google Scholar 

  86. Lipatov, A., Alhabeb, M., Lukatskaya, M. R., Boson, A., Gogotsi, Y., & Sinitskii, A. (2016). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials, 2(12), 1600255.

    Article  CAS  Google Scholar 

  87. Kinsey, N., DeVault, C., Kim, J., Ferrera, M., Shalaev, V. M., & Boltasseva, A. (2015). Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica, 2(7), 616–622.

    Article  CAS  Google Scholar 

  88. Marini, A., & García de Abajo, F. J. (2016). Graphene-based active random metamaterials for cavity-free lasing. Physical Review Letters, 116(21), 217401.

    Article  CAS  Google Scholar 

  89. Wang, Z., Meng, X., Chaudhuri, K., Alhabeb, M., Azzam, S. I., Kildishev, A. V., Kim, Y. L., Shalaev, V. M., Gogotsi, Y., & Boltasseva, A. (2017). Active metamaterials based on monolayer titanium carbide MXene for random lasing. In Conference on lasers and electro-optics (p. FTu4G.7). Washington, D.C.: OSA.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Boltasseva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhuri, K. et al. (2019). Optical Properties of MXenes. In: Anasori, B., Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes). Springer, Cham. https://doi.org/10.1007/978-3-030-19026-2_17

Download citation

Publish with us

Policies and ethics