Whole Body Diffusion-Weighted Magnetic Resonance Imaging: A New Era for Whole Body Imaging in Myeloma?

  • Christina MessiouEmail author
  • Dow-Mu Koh

Abstract and Aims

There is an increasing role for whole body MRI in patients with myeloma. Diffusion-weighted MRI is highly sensitive and as a functional imaging technique is also valuable for response assessments. As such, diffusion-weighted MRI has become an integral component of whole body MRI protocols.

This chapter aims to:
  • Describe the current role for whole body MRI in myeloma

  • Give a brief overview of whole body MRI protocols

  • Introduce the basic principles of diffusion-weighted MRI and interpretation including pitfalls

  • Describe the current and future applications of diffusion-weighted MRI in myeloma


Myeloma Whole body MRI Diffusion MRI Imaging 



We acknowledge National Health Service funding to the National Institute for Health Research Biomedical Research Centre, Clinical Research Facility in Imaging and the Cancer Research Network. The views expressed in this publication are those of the author(s) and not necessarily those of the National Health Service, the National Institute for Health Research or the Department of Health.


  1. 1.
    Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15(12):e538–48.PubMedCrossRefGoogle Scholar
  2. 2.
    Dimopoulos MA, Hillengass J, Usmani S, et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol. 2015;33(6):657–64.PubMedCrossRefGoogle Scholar
  3. 3.
    Kastritis E, Terpos E, Moulopoulos L, et al. Extensive bone marrow infiltration and abnormal free light chain ratio identifies patients with asymptomatic myeloma at high risk for progression to symptomatic disease. Leukemia. 2013;27(4):947–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Mateos M, Hernandez M, Giraldo P. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. New Engl J Med. 2013;369(5):438–47.PubMedCrossRefGoogle Scholar
  5. 5.
    Moulopoulos LA, Dimopoulos MA, Smith TL, et al. Prognostic significance of magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol. 1995;13(1):251–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Moulopoulos LA, Gika D, Anagnostopoulos A, et al. Prognostic significance of magnetic resonance imaging of bone marrow in previously untreated patients with multiple myeloma. Ann Oncol. 2005;16(11):1824–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Mariette X, Zagdanski AM, Guermazi A, et al. Prognostic value of vertebral lesions detected by magnetic resonance imaging in patients with stage I multiple myeloma. Br J Haematol. 1999;104(4):723–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Dhodapkar MV, Sexton R, Waheed S, et al. Clinical, genomic, and imaging predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120). Blood. 2014;123(1):78–85.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Dimopoulos M, Terpos E, Comenzo RL, et al. International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple myeloma. Leukemia. 2009;23(9):1545–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Hillengass J, Bäuerle T, Bartl R, et al. Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol. 2011;153(6):721–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Bauerle T, Hillengass J, Fechtner K, et al. Multiple myeloma and monoclonal gammopathy of undetermined significance: importance of whole-body versus spinal MR imaging. Radiology. 2009;252(2):477–85.PubMedCrossRefGoogle Scholar
  12. 12.
    Lecouvet FE, Vande Berg BC, Michaux L, et al. Stage III multiple myeloma: clinical and prognostic value of spinal bone marrow MR imaging. Radiology. 1998;209(3):653–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Baur-Melnyk A, Buhmann S, Dürr HR, Reiser M. Role of MRI for the diagnosis and prognosis of multiple myeloma. Eur J Radiol. 2005;55(1):56–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Wale A, Pawlyn C, Kaiser M, Messiou C. Frequency, distribution and clinical management of incidental findings and extramedullary plasmacytomas in whole body diffusion weighted magnetic resonance imaging in patients with multiple myeloma. Haematologica. 2016;101(4):e142–4.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Short KD, Rajkumar SV, Larson D, et al. Incidence of extramedullary disease in patients with multiple myeloma in the era of novel therapy, and the activity of pomalidomide on extramedullary myeloma. Leukemia. 2011;25(6):906–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Moreau P, Attal M, Caillot D, et al. Prospective evaluation of magnetic resonance imaging and [18F]Fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial: results of the IMAJEM study. J Clin Oncol. 2017;35(25):2911–8.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Pawlyn C, Fowkes L, Otero S, et al. Whole-body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia. 2016;30(6):1446–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Merkle EM, Dale BM, Paulson EK. Abdominal MR imaging at 3T. Magn Reson Imaging Clin N Am. 2006;14(1):17–26.PubMedCrossRefGoogle Scholar
  19. 19.
    Koh DM, Takahara T, Imai Y, Collins DJ. Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci. 2007;6(4):211–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Costelloe CM, Madewell JE, Kundra V, et al. Conspicuity of bone metastases on fast Dixon-based multisequence whole-body MRI: clinical utility per sequence. Magn Reson Imaging. 2013;31(5):669–75.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Takahara T, Imai Y, Yamashita T, et al. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22(4):275–82.PubMedGoogle Scholar
  22. 22.
    Messiou C, deSouza NM. Metastasis imaging: current concepts and future challenges. Cancer Biomark. 2010;7(4):171–2.PubMedGoogle Scholar
  23. 23.
    Messiou C, Collins DJ, Morgan VA, Desouza NM. Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility. Eur Radiol. 2011;21(8):1713–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Guo AC, Cummings TJ, Dash RC, Provenzale JM. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology. 2002;224(1):177–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Lyng H, Haraldseth O, Rofstad EK. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med. 2000;43(6):828–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging. 1999;9(1):53–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Tamai K, Koyama T, Saga T, et al. diffusion-weighted MR imaging of uterine endometrial cancer. J Magn Reson Imaging. 2007;26(3):682–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Gupta R, Sinha U, Cloughesy T, Alger JR. Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn Reson Med. 1999;41(1):2–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Chenevert TL, Stegman LD, Taylor JM, et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst. 2000;92(24):2029–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Charles-Edwards EM, deSouza NM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging. 2006;6:135–43.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ross BD, Chenevert TL, Kim B, Ben-Joseph O. Magnetic resonance imaging and spectroscopy: application to experimental neuro-oncology. J Magn Reson Biol Med. 1994;1(2):89–106.Google Scholar
  32. 32.
    Theilmann RJ, Borders R, Trouard TP, et al. Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia. 2004;6(6):831–7.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Jennings D, Hatton BN, Guo J, et al. Early response of prostate carcinoma xenografts to docetaxel chemotherapy monitored with diffusion MRI. Neoplasia. 2002;4(3):255–62.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Moffat BA, Chenevert TL, Meyer CR, et al. The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia. 2006;8(4):259–67.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lee KC, Hall DE, Hoff BA, et al. Dynamic imaging of emerging resistance during cancer therapy. Cancer Res. 2006;66(9):4687–92.PubMedCrossRefGoogle Scholar
  36. 36.
    Nonomura Y, Yasumoto M, Yoshimura R, et al. Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging. 2001;13(5):757–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Hillengass J, Fechtner K, Weber MA, et al. Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol. 2010;28(9):1606–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Pearce T, Philip S, Brown J, Koh DM, Burn PR. Bone metastases from prostate, breast and multiple myeloma: differences in lesion conspicuity at short-tau inversion recovery and diffusion-weighted MRI. Br J Radiol. 2012;85(1016):1102–6.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Squillaci E, Bolacchi F, Altobelli S, et al. Pre-treatment staging of multiple myeloma patients: comparison of whole-body diffusion weighted imaging with whole-body T1-weighted contrast-enhanced imaging. Acta Radiol. 2015;56(6):733–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Dutoit JC, Vanderkerken MA, Anthonissen J, Dochy F, Verstraete KL. The diagnostic value of SE MRI and DWI of the spine in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma. Eur Radiol. 2014;24(11):2754–65.PubMedCrossRefGoogle Scholar
  41. 41.
    Messiou C, Collins DJ, Giles S, de Bone JS, Bianchini D, de Souza NM. Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol. 2011;21(10):2169–77.PubMedCrossRefGoogle Scholar
  42. 42.
    Lecouvet FE, El Mouedden J, Collette L, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99 m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62(1):68–75.PubMedCrossRefGoogle Scholar
  43. 43.
    Wu LM, Gu HY, Zheng J, et al. Diagnostic value of whole-body magnetic resonance imaging for bone metastases: a systematic review and meta-analysis. J Magn Reson Imaging. 2011;34(1):128–35.PubMedCrossRefGoogle Scholar
  44. 44.
    Giles SL, deSouza NM, Collins DJ, et al. Assessing myeloma bone disease with whole-body diffusion-weighted imaging: comparison with x-ray skeletal survey by region and relationship with laboratory estimates of disease burden. Clin Radiol. 2015;70(6):614–21.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Narquin S, Ingrand P, Azais I, et al. Comparison of whole-body diffusion MRI and conventional radiological assessment in the staging of myeloma. Diagn Interv Imaging. 2013;94(6):629–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Giles SL, Messiou C, Collins DJ, et al. Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology. 2014;271(3):785–94.PubMedCrossRefGoogle Scholar
  47. 47.
    Messiou C, Giles S, Collins DJ, et al. Assessing response of myeloma bone disease with diffusion-weighted MRI. Br J Radiol. 2012;85(1020):c1198–203.CrossRefGoogle Scholar
  48. 48.
    Barnes A, Alonzi R, Blackledge M, et al. UK quantitative WB-DWI technical workgroup: consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer. Br J Radiol. 2018;91(1081):20170577. Epub 2017 Dec 7.PubMedCrossRefGoogle Scholar
  49. 49.
    Zamagni E, Patriarca F, Nanni C, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118(23):5989–95.PubMedCrossRefGoogle Scholar
  50. 50.
    Bartel TB, Haessler J, Brown TL, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood. 2009;114(10):2068–76.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hillengass J, Ayyaz S, Kilk K, et al. Changes in magnetic resonance imaging before and after autologous stem cell transplantation correlate with response and survival in multiple myeloma. Haematologica. 2012;97(11):1757–60.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Moulopoulos LA, Yoshimitsu K, Johnston DA, Leeds NE, Libshitz HI. MR prediction of benign and malignant vertebral compression fractures. J Magn Reson Imaging. 1996;6(4):667–74.PubMedCrossRefGoogle Scholar
  53. 53.
    Sung JK, Jee WH, Jung JY, et al. Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T. Radiology. 2014;271(2):488–98.PubMedCrossRefGoogle Scholar
  54. 54.
    Geith T, Schmidt G, Biffar A, et al. Comparison of qualitative and quantitative evaluation of diffusion-weighted MRI and chemical-shift imaging in the differentiation of benign and malignant vertebral body fractures. AJR Am J Roentgenol. 2012;199(5):1083–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Geith T, Schmidt G, Biffar A, et al. Quantitative evaluation of benign and malignant vertebral fractures with diffusion-weighted MRI: what is the optimum combination of b values for ADC-based lesion differentiation with the single-shot turbo spin-echo sequence? AJR Am J Roentgenol. 2014;203(3):582–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Winfield JM, Poillucci G, Blackledge MD, et al. Apparent diffusion coefficient of vertebral haemangiomas allows differentiation from malignant focal deposits in whole-body diffusion-weighted MRI. Eur Radiol. 2017;28(4):1687–91.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Koh DM, Blackledge M, Padhani AR, et al. Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol. 2012;199(2):252–62.PubMedCrossRefGoogle Scholar
  58. 58.
    Moulopoulos LA, Koutoulidis V. Bone marrow MRI: a pattern-based approach. Milan: Springer; 2015.CrossRefGoogle Scholar
  59. 59.
    Lecouvet FE. Whole-body MR imaging: musculoskeletal applications. Radiology. 2016;279(2):345–65.PubMedCrossRefGoogle Scholar
  60. 60.
    Wu C, Huang J, Xu WB, et al. Discriminating depth of response to therapy in multiple myeloma using whole-body diffusion-weighted MRI with apparent diffusion coefficient: preliminary results from a single-center study. Acad Radiol. 2018;25(7):904–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Koutoulidis V, Fontara S, Terpos E, et al. Quantitative diffusion-weighted imaging of the bone marrow: an adjunct tool for the diagnosis of a diffuse MR imaging pattern in patients with multiple myeloma. Radiology. 2017;282(2):484–93.PubMedCrossRefGoogle Scholar
  62. 62.
    Blackledge MD, Leach MO, Collins DJ, Koh DM. Computed diffusion-weighted MR imaging may improve tumor detection. Radiology. 2011;261(2):573–81.PubMedCrossRefGoogle Scholar
  63. 63.
    Blackledge MD, Collins DJ, Tunariu N, et al. Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS One. 2014;9(4):e91779.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of RadiologyThe Royal Marsden and The Institute of Cancer ResearchLondonUK

Personalised recommendations