Microbial Diversity of Saline Habitats: An Overview of Biotechnological Applications

Part of the Soil Biology book series (SOILBIOL, volume 56)


Saline environments across oceans, salt lakes, salt pans, and salterns are home to a myriad variety of microbes, plants, and higher animals. These environments give rise to unusual adaptive properties in microbes, which could be exploited for biotechnological applications. Current advances in technology such as culture-based methods and metagenomics have facilitated the detection and study of distribution of microorganisms in extreme saline habitats. This chapter broadly covers the microbial diversity of saline ecological niches with emphasis on screening and isolation of halophiles, leading to the production of new bioactive molecules such as enzymes, antibiotics, osmolytes, and polymers. Further applications of these microbes in bioremediation, enzyme industry, drug development, biofuels, bioplastics, and compatible solutes have been extensively discussed.


Microbial diversity Halophiles Industrial enzymes Antibiotics Bioremediation Compatible solutes Bioplastics 



SG is grateful to the Indian Institute of Technology Delhi and MHRD, Government of India for Senior Research Fellowship. Author SK is grateful to the Council of Scientific and Industrial Research (CSIR, Govt. of India) for Senior Research Associateship (Scientists’ Pool Scheme).


  1. Akolkar AV, Deshpande GM, Raval KN, Durai D, Nerurkar AS, Desai AJ (2008) Organic solvent tolerance of Halobacterium sp. SP1 (1) and its extracellular protease. J Basic Microbiol 48(5):421–425PubMedCrossRefPubMedCentralGoogle Scholar
  2. Akolkar AV, Durai D, Desai AJ (2010) Halobacterium sp. SP1 (1) as a starter culture for accelerating fish sauce fermentation. J Appl Microbiol 109(1):44–53PubMedPubMedCentralGoogle Scholar
  3. Ali I, Akbar A, Yanwisetpakdee B, Prasongsuk S, Lotrakul P, Punnapayak H (2014) Purification, characterization, and potential of saline waste water remediation of a polyextremophilic α-amylase from an obligate halophilic Aspergillus gracilis. Biomed Res Int 2014:1–7CrossRefGoogle Scholar
  4. Al-Mueini R, Al-Dalali M, Al-Amri IS, Patzelt H (2007) Hydrocarbon degradation at high salinity by a novel extremely halophilic actinomycete. Environ Chem 4(1):5–7CrossRefGoogle Scholar
  5. Alsafadi D, Alsalman S, Paradisi F (2017) Extreme halophilic alcohol dehydrogenase mediated highly efficient syntheses of enantiopure aromatic alcohols. Org Biomol Chem 15(43):9169–9175PubMedCrossRefPubMedCentralGoogle Scholar
  6. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169PubMedPubMedCentralGoogle Scholar
  7. Amoozegar MA, Ghasemi A, Razavi MR, Naddaf S (2007) Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochem 42(10):1475–1479CrossRefGoogle Scholar
  8. Amoozegar MA, Ashengroph M, Malekzadeh F, Razavi MR, Naddaf S, Kabiri M (2008) Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6. Microbiol Res 163(4):456–465PubMedCrossRefPubMedCentralGoogle Scholar
  9. Armstrong RE, Warner JB (2003) Biology and the battlefield. Defense Horiz:24–25 S1Google Scholar
  10. Arora A, Ha C, Park CB (2004) Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett 564(1–2):121–125PubMedCrossRefGoogle Scholar
  11. Bajpai B, Chaudhary M, Saxena J (2015) Production and characterization of α-amylase from an extremely halophilic archaeon, Haloferax sp. HA10. Food Technol Biotechnol 53(1):11–17PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barth S, Huhn M, Matthey B, Klimka A, Galinski EA, Engert A (2000) Compatible-solute-supported periplasmic expression of functional recombinant proteins under stress conditions. Appl Environ Microbiol 66(4):1572–1579PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bayley ST, Morton RA, Lanyi JK (1978) Recent developments in the molecular biology of extremely halophilic bacteria. CRC Crit Rev Microbiol 6(2):151–206PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11(5):260–263CrossRefGoogle Scholar
  15. Bestvater T, Louis P, Galinski EA (2008) Heterologous ectoine production in Escherichia coli: by-passing the metabolic bottle-neck. Saline Syst 4:12PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bonfá MRL, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84(11):1671–1676PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bonfá MRL, Grossman MJ, Piubeli F, Mellado E, Durrant LR (2013) Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodegradation 24(5):699–709PubMedCrossRefPubMedCentralGoogle Scholar
  18. Boyden E, Deisseroth K (2007) Light-activated cation channel and uses thereof. U.S. Patent Application 11/459, 637Google Scholar
  19. Britton KL, Baker PJ, Fisher M, Ruzheinikov S, Gilmour DJ, Bonete MJ, Ferrer J, Pire C, Esclapez J, Rice DW (2006) Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc Natl Acad Sci 103(13):4846–4851PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the Central Baltic Sea. Appl Environ Microbiol 68(8):3978–3987PubMedPubMedCentralCrossRefGoogle Scholar
  21. Buenger J, Driller H (2004) Ectoin: an effective natural substance to prevent UVA-induced premature photoaging. Skin Pharmacol Physiol 17(5):232–237PubMedCrossRefGoogle Scholar
  22. Bumadian MM, Williamson MP, Gilmour DJ (2014) The de novo synthesis and uptake of compatible solutes in Klebsiella pneumoniae ATCC 342. Nucleus 12:26Google Scholar
  23. Camacho RM, Mateos JC, González-Reynoso O, Prado LA, Córdova J (2009) Production and characterization of esterase and lipase from Haloarcula marismortui. J Ind Microbiol Biotechnol 36(7):901–909PubMedCrossRefGoogle Scholar
  24. Carmeli C, Carmeli I, Richter S, Frolov L (2009) Optoelectronic device and method of fabricating the same. U.S. Patent 8,212,005Google Scholar
  25. Castro-Severyn J, Remonsellez F, Valenzuela SL, Salinas C, Fortt J, Aguilar P, Pardo-Esté C, Dorador C, Quatrini R, Molina F (2017) Comparative genomics analysis of a new Exiguobacterium strain from salar de huasco reveals a repertoire of stress-related genes and arsenic resistance. Front Microbiol 8:456PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chakraborty S, Khopade A, Biao R, Jian W, Liu XY, Mahadik K, Chopade B, Zhang L, Kokare C (2011) Characterization and stability studies on surfactant, detergent and oxidant stable α-amylase from marine haloalkaliphilic Saccharopolyspora sp. A9. J Mol Catal B Enzym 68(1):52–58CrossRefGoogle Scholar
  27. Chang HW, Kim KH, Nam YD, Roh SW, Kim MS, Jeon CO, Oh HM, Bae JW (2008) Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int J Food Microbiol 126(1–2):159–166PubMedCrossRefGoogle Scholar
  28. Chang J, Lee YS, Fang SJ, Park IH, Choi YL (2013) Recombinant expression and characterization of an organic-solvent-tolerant α-amylase from Exiguobacterium sp. DAU5. Appl Biochem Biotechnol 169(6):1870–1883PubMedCrossRefGoogle Scholar
  29. Charan RD, Schlingmann G, Janso J, Bernan V, Feng X, Carter GT (2004) Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J Nat Prod 67(8):1431–1433PubMedCrossRefGoogle Scholar
  30. Chen Z, Birge RR (1993) Protein-based artificial retinas. Trends Biotechnol 11(7):292–300PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chen Z, Wan C (2017) Non-sterile fermentations for the economical biochemical conversion of renewable feedstocks. Biotechnol Lett 39(12):1765–1777PubMedCrossRefPubMedCentralGoogle Scholar
  32. Chuprom J, Bovornreungroj P, Ahmad M, Kantachote D, Dueramae S (2016) Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology. Biotechnol Rep 10:17–28CrossRefGoogle Scholar
  33. Cleland D, Krader P, McCree C, Tang J, Emerson D (2004) Glycine betaine as a cryoprotectant for prokaryotes. J Microbiol Methods 58(1):31–38PubMedCrossRefPubMedCentralGoogle Scholar
  34. Conde-Martínez N, Acosta-González A, Díaz LE, Tello E (2017) Use of a mixed culture strategy to isolate halophilic bacteria with antibacterial and cytotoxic activity from the Manaure solar saltern in Colombia. BMC Microbiol 17:230PubMedPubMedCentralCrossRefGoogle Scholar
  35. Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68(8):3878–3885PubMedPubMedCentralCrossRefGoogle Scholar
  36. Coronado MJ, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000) Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridian. FEMS Microbiol Lett 183(1):67–71PubMedPubMedCentralGoogle Scholar
  37. Cragg GM, Newman DJ (2005) Biodiversity: a continuing source of novel drug leads. Pure Appl Chem 77(1):7–24CrossRefGoogle Scholar
  38. Cui C, Ma L, Shi J, Lin K, Luo Q, Liu Y (2014) Metabolic pathway for degradation of anthracene by halophilic Martelella sp. AD-3. Int Biodeterior Biodegradation 89:67–73CrossRefGoogle Scholar
  39. Cyplik P, Grajek W, Marecik R, Króliczak P, Dembczyński R (2007) Application of a membrane bioreactor to denitrification of brine. Desalination 207(1–3):134–143CrossRefGoogle Scholar
  40. DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126PubMedPubMedCentralCrossRefGoogle Scholar
  41. de Lourdes Moreno M, García MT, Ventosa A, Mellado E (2009) Characterization of Salicola sp. IC10, a lipase-and protease-producing extreme halophile. FEMS Microbiol Ecol 68(1):59–71CrossRefGoogle Scholar
  42. de Lourdes Moreno M, Pérez D, García MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3(1):38–51PubMedPubMedCentralCrossRefGoogle Scholar
  43. Del Moral A, Severin J, Ramos-Cormenzana A, Trüper HG, Galinski EA (1994) Compatible solutes in new moderately halophilic isolates. FEMS Microbiol Lett 122(1–2):165–172CrossRefGoogle Scholar
  44. Delille D, Basseres A, Dessommes A (1998) Effectiveness of bioremediation for oil-polluted Antarctic seawater. Polar Biol 19(4):237–241CrossRefGoogle Scholar
  45. Dincer AR, Kargi F (2001) Performance of rotating biological disc system treating saline wastewater. Process Biochem 36(8–9):901–906CrossRefGoogle Scholar
  46. Don TM, Chen CW, Chan TH (2006) Preparation and characterization of poly (hydroxyalkanoate) from the fermentation of Haloferax mediterranei. J Biomater Sci Polym Ed 17(12):1425–1438PubMedCrossRefGoogle Scholar
  47. Emerson D, Breznak JA (1997) The response of microbial populations from oil-brine contaminated soil to gradients of NaCl and sodium p-toluate in a diffusion gradient chamber. FEMS Microbiol Ecol 23(4):285–300CrossRefGoogle Scholar
  48. Emerson D, Chauhan S, Oriel P, Breznak JA (1994) Haloferax sp. D1227, a halophilic Archaeon capable of growth on aromatic compounds. Arch Microbiol 161(6):445–452CrossRefGoogle Scholar
  49. Essghaier B, Rouaissi M, Boudabous A, Jijakli H, Sadfi-Zouaoui N (2010) Production and partial characterization of chitinase from a halotolerant Planococcus rifitoensis strain M2-26. World J Microbiol Biotechnol 26(6):977–984CrossRefGoogle Scholar
  50. Fernandez-Castillo R, Rodriguez-Valera F, Gonzalez-Ramos J, Ruiz-Berraquero F (1986) Accumulation of poly (β-hydroxybutyrate) by halobacteria. Appl Environ Microbiol 51(1):214–216PubMedPubMedCentralGoogle Scholar
  51. Fernandez-Castillo R, Vargas C, Nieto JJ, Ventosa A, Ruiz-Berraquero F (1992) Characterization of a plasmid from moderately halophilic eubacteria. Microbiology 138(6):1133–1137Google Scholar
  52. Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R (2005) Organic solvent tolerance of halophilic α-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9(1):85–89PubMedCrossRefGoogle Scholar
  53. Galinski EA (1993) Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49(6–7):487–496CrossRefGoogle Scholar
  54. Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328CrossRefGoogle Scholar
  55. Gao R, Shi T, Liu X, Zhao M, Cui H, Yuan L (2017) Purification and characterisation of a salt-stable protease from the halophilic archaeon Halogranum rubrum. J Sci Food Agr 97(5):1412–1419CrossRefGoogle Scholar
  56. García-Torreiro M, Lú-Chau TA, Steinbüchel A, Lema JM (2016) Waste to bioplastic conversion by the moderate halophilic bacterium Halomonas boliviensis. Chem Eng Trans 49:163–168Google Scholar
  57. Garg R, Srivastava R, Brahma V, Verma L, Karthikeyan S, Sahni G (2016) Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome. Sci Rep 6:39634PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 42(4):568–576Google Scholar
  59. Ghafoori H, Askari M, Sarikhan S (2016) Purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis (X5B). Extremophiles 20(2):115–123PubMedCrossRefGoogle Scholar
  60. Ghazvini PTM, Mashkani SG (2009) Effect of salinity on vanadate biosorption by Halomonas sp. GT-83: preliminary investigation on biosorption by micro-PIXE technique. Bioresour Technol 100(8):2361–2368CrossRefGoogle Scholar
  61. Ginzburg BZ (1993) Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy. Renew Energy 3:249–252CrossRefGoogle Scholar
  62. Goldman Y, Garti N, Sasson Y, Ginzburg BZ, Bloch MR (1981) Conversion of halophilic algae into extractable oil. 2. Pyrolysis of proteins. Fuel 60(2):90–92CrossRefGoogle Scholar
  63. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64(6):763–781PubMedCrossRefPubMedCentralGoogle Scholar
  64. Gutiérrez-Arnillas E, Rodríguez A, Sanromán MA, Deive FJ (2016) New sources of halophilic lipases: isolation of bacteria from Spanish and Turkish saltworks. Biochem Eng J 109:170–177CrossRefGoogle Scholar
  65. Hampp N, Seitz A, Paster-Nack R, Fuchsbauer HL (2005) Linker-free covalent coupling of bacteriorhodopsin in purple membrane form. U.S. Patent 6,927,050Google Scholar
  66. Han J, Wu LP, Liu XB, Hou J, Zhao LL, Chen JY, Zhao DH, Xiang H (2017) Biodegradation and biocompatibility of haloarchaea-produced poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers. Biomaterials 139:172–186PubMedCrossRefGoogle Scholar
  67. Hao R, Lu A (2009) Biodegradation of heavy oils by halophilic bacterium. Prog Nat Sci 19(8):997–1001CrossRefGoogle Scholar
  68. Harding KG, Dennis JS, Von Blottnitz H, Harrison STL (2008) A life-cycle comparison between inorganic and biological catalysis for the production of biodiesel. J Clean Prod 16(13):1368–1378CrossRefGoogle Scholar
  69. Harvey T, Schmadel D (2007) Holographic storage system with single switch access. U.S. Patent Application 11/750,264Google Scholar
  70. Hayashi H, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16(2):155–161PubMedCrossRefPubMedCentralGoogle Scholar
  71. He H, Ding WD, Bernan VS, Richardson AD, Ireland CM, Greenstein M, Ellestad GA, Carter GT (2001) Lomaiviticins A and B, potent antitumor antibiotics from Micromonospora lomaivitiensis. J Am Chem Soc 123(22):5362–5363PubMedCrossRefPubMedCentralGoogle Scholar
  72. Hebert AM, Vreeland RH (1987) Phenotypic comparison of halotolerant bacteria: Halomonas halodurans sp. nov., nom. rev., comb. Nov. Int J Syst Evol Microbiol 37(4):347–350Google Scholar
  73. Hemamalini R, Khare SK (2016) Purification and characterization of active aggregates of an organic solvent tolerant lipase from Marinobacter sp. EMB5. Insights Enzym Res 1:3Google Scholar
  74. Hemamalini R, Khare SK (2018) Halophilic lipase does forms catalytically active aggregates: evidence from Marinobacter sp. EMB5 lipase (LipEMB5). Int J Biol Macromol 119:172–179PubMedCrossRefPubMedCentralGoogle Scholar
  75. Hertadi R, Kurnia K, Falahudin W, Puspasari M (2017) Poly-hydroxybutyrate (PHB) production by Halomonas elongata BK AG 18 indigenous from salty mud crater at Central Java Indonesia. Malays J Microbiol 13:26–32Google Scholar
  76. Hinteregger C, Streichsbier F (1997) Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste-water. Biotechnol Lett 19(11):1099–1102CrossRefGoogle Scholar
  77. Holmes ML, Scopes RK, Moritz RL, Simpson RJ, Englert C, Pfeifer F, Dyall-Smith ML (1997) Purification and analysis of an extremely halophilic β-galactosidase from Haloferax alicantei. Biochim Biophys Acta Protein Struct Mol Enzymol 1337(2):276–286CrossRefGoogle Scholar
  78. Holmström KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51(343):177–185PubMedCrossRefPubMedCentralGoogle Scholar
  79. Hung KS, Liu SM, Tzou WS, Lin FP, Pan CL, Fang TY, Sun KH, Tang SJ (2011) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 46(6):1257–1263CrossRefGoogle Scholar
  80. Jensen RB, Kelemen BR, McAuliffe JC, Smith WC (2010) Method for preparing solid materials comprising immobilized proteorhodopsin. U.S. Patent 7,745,066Google Scholar
  81. Jolley KA, Russell RJM, Hough DW, Danson MJ (1997) Site-directed mutagenesis and halophilicity of dihydrolipoamide dehydrogenase from the halophilic archaeon, Haloferax volcanii. Eur J Biochem 248(2):362–368PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kamekura M, Onishi H (1974) Halophilic nuclease from a moderately halophilic Micrococcus varians. J Bacteriol 119(2):339–344PubMedPubMedCentralGoogle Scholar
  83. Kanai H, Kobayashi T, Aono R, Kudo T (1995) Natronococcus amylolyticus sp. nov., a haloalkaliphilic archaeon. Int J Syst Evol Microbiol 45(4):762–766Google Scholar
  84. Kaplan DL, Omenetto F, Lawrence B, Cronin-Golomb M, Georgakoudi I (2010) Biopolymer optofluidic device and method of manufacturing the same. U.S. Patent Application 12/513,423Google Scholar
  85. Kaplan DL, Omenetto F, Lawrence B, Cronin-Golomb M (2018) Nanopatterned biopolymer optical device and method of manufacturing the same. U.S. Patent 9,969,134Google Scholar
  86. Karan R, Khare SK (2011) Stability of haloalkaliphilic Geomicrobium sp. protease modulated by salt. Biochem Mosc 76(6):686–693CrossRefGoogle Scholar
  87. Karan R, Singh SP, Kapoor S, Khare SK (2011) A novel organic solvent tolerant protease from a newly isolated Geomicrobium sp. EMB2 (MTCC 10310): production optimization by response surface methodology. New Biotechnol 28(2):136–145CrossRefGoogle Scholar
  88. Karan R, Capes MD, DasSarma S (2012a) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8:4PubMedPubMedCentralCrossRefGoogle Scholar
  89. Karan R, Kumar S, Sinha R, Khare SK (2012b) Halophilic microorganisms as sources of novel enzymes. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in sustainable agriculture and biotechnology. Springer, Dordrecht, pp 555–579CrossRefGoogle Scholar
  90. Karan R, Capes MD, DasSarma P, DasSarma S (2013) Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 13:3PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kawata Y, Aiba SI (2010) Poly (3-hydroxybutyrate) production by isolated Halomonas sp. KM-1 using waste glycerol. Biosci Biotechnol Biochem 74(1):175–177PubMedCrossRefGoogle Scholar
  92. Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11(10):1641–1650PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kiran KK, Chandra TS (2008) Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. strain TSCVKK. Appl Microbiol Biotechnol 77(5):1023–1031PubMedCrossRefGoogle Scholar
  94. Knopf GK, Wang WW, Bassi AS (2009) Flexible bioelectronic photodetector and imaging arrays based on bacteriorhodopsin (BR) thin films. U.S. Patent 7,573,024Google Scholar
  95. Kokare CR, Mahadik KR, Kadam SS, Chopade BA (2004) Isolation, characterization and antimicrobial activity of marine halophilic Actinopolyspora species AH1 from the west coast of India. Curr Sci 86(4):593–597Google Scholar
  96. Kubo M, Hiroe J, Murakami M, Fukami H, Tachiki T (2001) Treatment of hypersaline-containing wastewater with salt-tolerant microorganisms. J Biosci Bioeng 91(2):222–224PubMedCrossRefGoogle Scholar
  97. Kucera D, Pernicová I, Kovalcik A, Koller M, Mullerova L, Sedlacek P, Mravec F, Nebesarova J, Kalina M, Marova I (2018) Characterization of the promising poly (3-hydroxybutyrate) producing halophilic bacterium Halomonas halophile. Bioresour Technol 256:552–556PubMedCrossRefGoogle Scholar
  98. Kulichevskaya IS (1991) Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria. Mikrobiologiya 60:860–866Google Scholar
  99. Kumar S, Khare SK (2012) Purification and characterization of maltooligosaccharide-forming α-amylase from moderately halophilic Marinobacter sp. EMB8. Bioresour Technol 116:247–251PubMedCrossRefGoogle Scholar
  100. Kumar S, Khare SK (2015) Chloride activated halophilic α-amylase from Marinobacter sp. EMB8: production optimization and nanoimmobilization for efficient starch hydrolysis. Enzym Res 2015:859485CrossRefGoogle Scholar
  101. Kumar S, Karan R, Kapoor S, Singh SP, Khare SK (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43(4):1595–1603PubMedPubMedCentralCrossRefGoogle Scholar
  102. Kumar S, Grewal J, Sadaf A, Hemamalini R, Khare SK (2016a) Halophiles as a source of polyextremophilic α-amylase for industrial applications. AIMS Microbiol 2(1):1–26CrossRefGoogle Scholar
  103. Kumar S, Khan RH, Khare SK (2016b) Structural elucidation and molecular characterization of Marinobacter sp. α-amylase. Prep Biochem Biotechnol 46(3):238–246PubMedCrossRefGoogle Scholar
  104. Kushner DJ (1993) Growth and nutrition of halophilic bacteria. In: Vreeland RH, Hochstein L (eds) The biology of halophilic bacteria. CRC, Boca Raton, FL, pp 87–103Google Scholar
  105. Lai SJ, Lai MC (2011) Characterization and regulation of the osmolyte betaine synthesizing enzymes GSMT and SDMT from halophilic methanogen Methanohalophilus portucalensis. PLoS One 6(9):e25090PubMedPubMedCentralCrossRefGoogle Scholar
  106. Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38(3):272–290PubMedPubMedCentralGoogle Scholar
  107. Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15(2–3):74–92PubMedCrossRefGoogle Scholar
  108. Lefebvre O (2005) Application des micro-organismes halophiles au traitement des effluents industriels hypersalins. Application des micro-organismes halophiles au traitement des effluents industriels hypersalins, Ecole Nationale Supérieure Agronomique de Montpellier 2005Google Scholar
  109. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40(20):3671–3682PubMedCrossRefGoogle Scholar
  110. León MJ, Hoffmann T, Sánchez-Porro C, Heider J, Ventosa A, Bremer E (2018) Compatible solute synthesis and import by the moderate halophile Spiribacter salinus: physiology and genomics. Front Microbiol 9:108PubMedPubMedCentralCrossRefGoogle Scholar
  111. Li X, Yu HY (2012) Characterization of an organic solvent-tolerant α-amylase from a halophilic isolate, Thalassobacillus sp. LY18. Folia Microbiol 57(5):447–453CrossRefGoogle Scholar
  112. Li X, Yu HY (2013) Halostable cellulase with organic solvent tolerance from Haloarcula sp. LLSG7 and its application in bioethanol fermentation using agricultural wastes. J Ind Microbiol Biotechnol 40(12):1357–1365PubMedCrossRefPubMedCentralGoogle Scholar
  113. Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A, Laatsch H (2005) Chinikomycins A and B: isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. Isolate M045. J Nat Prod 68(3):349–353PubMedCrossRefPubMedCentralGoogle Scholar
  114. Li X, Wang HL, Li T, Yu HY (2012) Purification and characterization of an organic solvent-tolerant alkaline cellulase from a halophilic isolate of Thalassobacillus. Biotechnol Lett 34(8):1531–1536PubMedCrossRefPubMedCentralGoogle Scholar
  115. Lombó F, Velasco A, Castro A, De la Calle F, Braña A, Alfredo F, Sánchez Puelles JM, Méndez C, Salas JA (2006) Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two Streptomyces species. Chembiochem 7(2):366–376PubMedCrossRefPubMedCentralGoogle Scholar
  116. Lopetcharat K, Choi YJ, Park JW, Daeschel MA (2001) Fish sauce products and manufacturing: a review. Food Rev Int 17(1):65–88CrossRefGoogle Scholar
  117. Madern D, Pfister C, Zaccai G (1995) Mutation at a single acidic amino acid enhances the halophilic behaviour of malate dehydrogenase from Haloarcula marismortui in physiological salts. Eur J Biochem 230(3):1088–1095PubMedCrossRefPubMedCentralGoogle Scholar
  118. Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4(2):91–98PubMedCrossRefPubMedCentralGoogle Scholar
  119. Mahansaria R, Dhara A, Saha A, Haldar S, Mukherjee J (2018) Production enhancement and characterization of the polyhydroxyalkanoate produced by Natrinema ajinwuensis (as synonym) ≡ Natrinema altunense strain RM-G10. Int J Biol Macromol 107:1480–1490PubMedCrossRefPubMedCentralGoogle Scholar
  120. Manam RR, Teisan S, White DJ, Nicholson B, Grodberg J, Neuteboom STC, Lam KS, Mosca DA, Lloyd GK, Potts BCM (2005) Lajollamycin, a nitro-tetraene spiro-β-lactone-γ-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J Nat Prod 68(2):240–243PubMedCrossRefPubMedCentralGoogle Scholar
  121. Margesin R, Schinner F (1999) Biological decontamination of oil spills in cold environments. J Chem Technol Biotechnol 74(5):381–389CrossRefGoogle Scholar
  122. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5(2):73–83PubMedCrossRefPubMedCentralGoogle Scholar
  123. Martínez-Espinosa RM, Zafrilla B, Camacho M, Bonete MJ (2007) Nitrate and nitrite removal from salted water by Haloferax mediterranei. Biocatal Biotransformation 25(2–4):295–300CrossRefGoogle Scholar
  124. Maskey RP, Li FC, Qin S, Fiebig HH, Laatsch H (2003) Chandrananimycins AC: production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. J Antibiot (Tokyo) 56(7):622–629CrossRefGoogle Scholar
  125. Masland RH (2016) Method for augmenting vision in persons suffering from photoreceptor cell degeneration. U.S. Patent 9,434,781Google Scholar
  126. Mellado E, Sánchez-Porro C, Ventosa A (2005) Proteases produced by halophilic bacteria and archaea. Microbiol Enzym Biotransform 17:181–190CrossRefGoogle Scholar
  127. Mesbah NM, Wiegel J (2014) Halophilic alkali-and thermostable amylase from a novel polyextremophilic Amphibacillus sp. NM-Ra2. Int J Biol Macromol 70:222–229PubMedCrossRefPubMedCentralGoogle Scholar
  128. Mevarech M, Eisenberg H, Neumann E (1977) Malate dehydrogenase isolated from extremely halophilic bacteria of the Dead Sea. 1. Purification and molecular characterization. Biochemistry 16(17):3781–3785PubMedCrossRefPubMedCentralGoogle Scholar
  129. Mirete S, Mora-Ruiz MR, Lamprecht-Grandío M, de Figueras CG, Rosselló-Móra R, González-Pastor J (2015) Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment. Front Microbiol 6:1121PubMedPubMedCentralCrossRefGoogle Scholar
  130. Miriam LRM, Raj RE, Kings AJ, Visvanathan MA (2017) Identification and characterization of a novel biodiesel producing halophilic Aphanothece halophytica and its growth and lipid optimization in various media. Energy Convers Manag 141:93–100CrossRefGoogle Scholar
  131. Murphy BT, Narender T, Kauffman CA, Woolery M, Jensen PR, Fenical W (2010) Saliniquinones AF, new members of the highly cytotoxic anthraquinone-γ-pyrones from the marine actinomycete Salinispora arenicola. Aust J Chem 63(6):929–934CrossRefGoogle Scholar
  132. Namwong S, Tanasupawat S, Visessanguan W, Kudo T, Itoh T (2007) Halococcus thailandensis sp. nov., from fish sauce in Thailand. Int J Syst Evol Microbiol 57(10):2199–2203PubMedCrossRefGoogle Scholar
  133. Nicholson CA, Fathepure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic condition. Appl Environ Microbiol 70(2):1222–1225PubMedCrossRefGoogle Scholar
  134. Nicholson CA, Fathepure BZ (2005) Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma. FEMS Microbiol Lett 245(2):257–262PubMedCrossRefGoogle Scholar
  135. Obuekwe CO, Badrudeen AM, Al-Saleh E, Mulder JL (2005) Growth and hydrocarbon degradation by three desert fungi under conditions of simultaneous temperature and salt stress. Int Biodeterior Biodegradation 56(4):197–205CrossRefGoogle Scholar
  136. Ogan A, Danis O, Gozuacik A, Cakmar E, Birbir M (2012) Production of cellulase by immobilized whole cells of Haloarcula. Appl Biochem Microbiol 48(5):440–443CrossRefGoogle Scholar
  137. Onishi H, Sonoda K (1979) Purification and some properties of an extracellular amylase from a moderate halophile, Micrococcus halobius. Appl Environ Microbiol 38(4):616–620PubMedPubMedCentralGoogle Scholar
  138. Onishi H, Mori T, Takeuchi S, Tani K, Kobayashi T, Kamekura M (1983) Halophilic nuclease of a moderately halophilic Bacillus sp.: production, purification, and characterization. Appl Environ Microbiol 45(1):24–30PubMedPubMedCentralGoogle Scholar
  139. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2PubMedPubMedCentralCrossRefGoogle Scholar
  140. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31(8–9):825–834PubMedCrossRefGoogle Scholar
  141. Pan ZH, Dizhoor AM (2013) Restoration of visual responses by in vivo delivery of rhodopsin nucleic acids. U.S. Patent 8,470,790Google Scholar
  142. Pathak AP, Sardar AG (2014) Isolation and characterization of salt stable protease producing archaea from marine solar saltern of Mulund, Mumbai. Indian J Geo Mar Sci 43(3):412–417Google Scholar
  143. Pérez D, Martín S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, García MT, Mellado E (2011) A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6(8):e23325PubMedPubMedCentralCrossRefGoogle Scholar
  144. Pérez-Pomares F, Bautista V, Ferrer J, Pire C, Marhuenda-Egea FC, Bonete MJ (2003) α-Amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7(4):299–306PubMedCrossRefPubMedCentralGoogle Scholar
  145. Prakash B, Vidyasagar M, Madhukumar MS, Muralikrishna G, Sreeramulu K (2009) Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101. Process Biochem 44(2):210–215CrossRefGoogle Scholar
  146. Rajagopalan R, Altekar W (1994) Characterisation and purification of ribulose-bisphosphate carboxylase from heterotrophically grown halophilic archaebacterium, Haloferax mediterranei. Eur J Biochem 221(2):863–869PubMedCrossRefPubMedCentralGoogle Scholar
  147. Rangaswamy V, Altekar W (1994) Characterization of 1-phosphofructokinase from halophilic archaebacterium Haloarcula vallismortis. Biochim Biophys Acta Gen Subj 1201(1):106–112CrossRefGoogle Scholar
  148. Rathgeber C, Yurkova N, Stackebrandt E, Beatty JT, Yurkov V (2002) Isolation of tellurite-and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 68(9):4613–4622PubMedPubMedCentralCrossRefGoogle Scholar
  149. Rathi DN, Amir HG, Abed RMM, Kosugi A, Arai T, Sulaiman O, Hashim R, Sudesh K (2013) Polyhydroxyalkanoate biosynthesis and simplified polymer recovery by a novel moderately halophilic bacterium isolated from hypersaline microbial mats. J Appl Microbiol 114(2):384–395PubMedCrossRefPubMedCentralGoogle Scholar
  150. Raytapadar S, Paul AK (2001) Production of an antifungal antibiotic by Streptomyces aburaviensis IDA-28. Microbiol Res 155(4):315–323PubMedCrossRefGoogle Scholar
  151. Rezaei S, Shahverdi AR, Faramarzi MA (2017) Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresour Technol 230:67–75PubMedCrossRefGoogle Scholar
  152. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5PubMedPubMedCentralCrossRefGoogle Scholar
  153. Roh SW, Nam YD, Chang HW, Sung Y, Kim KH, Oh HM, Bae JW (2007) Halalkalicoccus jeotgali sp. nov., a halophilic archaeon from shrimp jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 57(10):2296–2298PubMedCrossRefPubMedCentralGoogle Scholar
  154. Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36(3):333–340PubMedCrossRefPubMedCentralGoogle Scholar
  155. Röling WFM, Prasetyo AB, Stouthamer AH, Van Verseveld HW (1999) Physiological aspects of the growth of the lactic acid bacterium Tetragenococcus halophila during Indonesian soy sauce (kecap) production. J Appl Microbiol 86(2):348–352CrossRefGoogle Scholar
  156. Rosenberg A (1983) Pseudomonas halodurans sp. nov., a halotolerant bacterium. Arch Microbiol 136(2):117–123CrossRefGoogle Scholar
  157. Rothschild KJ, Olejnik J, Sonar SM (2007) Detection of markers in nascent proteins. U.S. Patent 7,211,394Google Scholar
  158. Ryu K, Kim J, Dordick JS (1994) Catalytic properties and potential of an extracellular protease from an extreme halophile. Enzym Microb Technol 16(4):266–275CrossRefGoogle Scholar
  159. Saeedi P, Moosaabadi JM, Sebtahmadi SS, Mehrabadi JF, Behmanesh M, Mekhilef S (2012) Potential applications of bacteriorhodopsin mutants. Bioengineered 3(6):326–328PubMedPubMedCentralCrossRefGoogle Scholar
  160. Santos AF, Valle RS, Pacheco CA, Alvarez VM, Seldin L, Santos A (2013) Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium. Braz J Microbiol 44(4):1299–1304PubMedCrossRefPubMedCentralGoogle Scholar
  161. Sasse F, Steinmetz H, Höfle G, Reichenbach H (1995) Gephyronic acid, a novel inhibitor of eukaryotic protein synthesis from Archangium gephyra (myxobacteria). J Antibiot 48(1):21–25PubMedCrossRefPubMedCentralGoogle Scholar
  162. Sauer T, Galinski EA (1998) Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng 57(3):306–313PubMedCrossRefPubMedCentralGoogle Scholar
  163. Schnoor M, Voss P, Cullen P, Böking T, Galla HJ, Galinski EA, Lorkowski S (2004) Characterization of the synthetic compatible solute homoectoine as a potent PCR enhancer. Biochem Biophys Res Commun 322(3):867–872PubMedCrossRefPubMedCentralGoogle Scholar
  164. Schreck SD, Grunden AM (2014) Biotechnological applications of halophilic lipases and thioesterases. Appl Microbiol Biotechnol 98(3):1011–1021PubMedCrossRefGoogle Scholar
  165. Selim S, Hagagy N, Aziz MA, El-Meleigy ES, Pessione E (2014) Thermostable alkaline halophilic-protease production by Natronolimnobius innermongolicus WN18. Nat Prod Res 28(18):1476–1479PubMedCrossRefGoogle Scholar
  166. Shafiei M, Ziaee AA, Amoozegar MA (2010) Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem 45(5):694–699CrossRefGoogle Scholar
  167. Shanmughapriya S, Kiran GS, Selvin J, Thomas TA, Rani C (2010) Optimization, purification, and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032. Appl Biochem Biotechnol 162(3):625–640PubMedCrossRefGoogle Scholar
  168. Shivanand P, Mugeraya G (2011) Halophilic bacteria and their compatible solutes-osmoregulation and potential applications. Curr Sci 100(10):1516–1521Google Scholar
  169. Sinha R, Khare SK (2012) Isolation of a halophilic Virgibacillus sp. EMB13: characterization of its protease for detergent application. Indian J Biotechnol 11(4):416–426Google Scholar
  170. Sinha R, Khare SK (2013) Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity. Bioresour Technol 145:357–361PubMedCrossRefGoogle Scholar
  171. Sinha R, Khare SK (2014) Effect of organic solvents on the structure and activity of moderately halophilic Bacillus sp. EMB9 protease. Extremophiles 18(6):1057–1066PubMedCrossRefPubMedCentralGoogle Scholar
  172. Sinsuwan S, Rodtong S, Yongsawatdigul J (2008) Production and characterization of NaCl-activated proteinases from Virgibacillus sp. SK33 isolated from fish sauce fermentation. Process Biochem 43(2):185–192CrossRefGoogle Scholar
  173. Song J, Oh HM, Cho JC (2009) Improved culturability of SAR11 strains in dilution-to-extinction culturing from the East Sea, West Pacific Ocean. FEMS Microbiol Lett 295(2):141–147PubMedCrossRefPubMedCentralGoogle Scholar
  174. Sujatha P, Raju KB, Ramana T (2005) Studies on a new marine streptomycete BT-408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus. Microbiol Res 160(2):119–126PubMedCrossRefPubMedCentralGoogle Scholar
  175. Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14(2):225–231PubMedCrossRefGoogle Scholar
  176. Tapingkae W, Tanasupawat S, Itoh T, Parkin KL, Benjakul S, Visessanguan W, Valyasevi R (2008) Natrinema gari sp. nov., a halophilic archaeon isolated from fish sauce in Thailand. Int J Syst Evol Microbiol 58(10):2378–2383PubMedCrossRefGoogle Scholar
  177. Tekin E, Ateş M, Kahraman Ö (2012) Poly-3-hydroxybutyrate-producing extreme halophilic archaeon: Haloferax sp. MA10 isolated from Çamaltı Saltern, İzmir. Turk J Biol 36(3):303–312Google Scholar
  178. Thongthai C, McGenity TJ, Suntinanalert P, Grant WD (1992) Isolation and characterization of an extremely halophilic archaeobacterium from traditionally fermented Thai fish sauce (nam pla). Lett Appl Microbiol 14(3):111–114CrossRefGoogle Scholar
  179. Todkar S, Todkar R, Kowale L, Karmarkar K, Kulkarni A (2012) Isolation and screening of antibiotic producing halophiles from Ratnagiri coastal area, state of Maharashtra. Int J Sci Res 2:2250–3153Google Scholar
  180. Tohme S, Hacıosmanoğlu GG, Eroğlu MS, Kasavi C, Genç S, Can ZS, Oner ET (2018) Halomonas smyrnensis as a cell factory for co-production of PHB and Levan. Int J Biol Macromol 118:1238–1246PubMedCrossRefPubMedCentralGoogle Scholar
  181. Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ (2008) SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452:741–744PubMedCrossRefPubMedCentralGoogle Scholar
  182. Trivedi S, Prakash Choudhary O, Gharu J (2011) Different proposed applications of bacteriorhodopsin. Recent Pat DNA Gene Seq 5(1):35–40PubMedCrossRefPubMedCentralGoogle Scholar
  183. Van-Thuoc D, Guzmán HC, Thi-Hang M, Hatti-Kaul R (2010) Ectoine production by Halomonas boliviensis: optimization using response surface methodology. Mar Biotechnol 12(5):586–593PubMedCrossRefPubMedCentralGoogle Scholar
  184. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309(1):1–7PubMedPubMedCentralGoogle Scholar
  185. Velho-Pereira S, Furtado I (2012) Antibacterial activity of halophilic bacterial bionts from marine invertebrates of Mandapam-India. Indian J Pharm Sci 74(4):331–338PubMedPubMedCentralCrossRefGoogle Scholar
  186. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62(2):504–544PubMedPubMedCentralGoogle Scholar
  187. Vera-Gargallo B, Ventosa A (2018) Metagenomic insights into the phylogenetic and metabolic diversity of the prokaryotic community dwelling in hypersaline soils from the Odiel saltmarshes (SW Spain). Genes 9(3):152PubMedCentralCrossRefPubMedGoogle Scholar
  188. Vidyasagar M, Prakash S, Mahajan V, Shouche YS, Sreeramulu K (2009) Purification and characterization of an extreme halothermophilic protease from a halophilic bacterium Chromohalobacter sp. TVSP101. Braz J Microbiol 40(1):12–19PubMedPubMedCentralCrossRefGoogle Scholar
  189. Weiss TL, Young EJ, Ducat DC (2017) A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Met Eng 44:236–245CrossRefGoogle Scholar
  190. Wejse PL, Ingvorsen K, Mortensen KK (2003) Purification and characterisation of two extremely halotolerant xylanases from a novel halophilic bacterium. Extremophiles 7(5):423–431PubMedCrossRefGoogle Scholar
  191. Williams PG, Buchanan GO, Feling RH, Kauffman CA, Jensen PR, Fenical W (2005) New cytotoxic Salinosporamides from the marine actinomycete Salinispora tropica. J Org Chem 70(16):6196–6203PubMedCrossRefGoogle Scholar
  192. Wu W, Fattal D, Santori C, Bicknell RN, Wang SY, Williams RS, Quitoriano NJ (2009) Optical device including waveguide grating structure. U.S. Patent 7,548,671Google Scholar
  193. Yadav N, Gupta MN, Khare SK (2017) Three phase partitioning and spectroscopic characterization of bioactive constituent from halophilic Bacillus subtilis EMB M15. Bioresour Technol 242:283–286PubMedCrossRefGoogle Scholar
  194. Yoshida M, Matsubara K, Kudo T, Horikoshi K (1991) Actinopolyspora mortivallis sp. nov., a moderately halophilic actinomycete. Int J Syst Evol Microbiol 41(1):15–20Google Scholar
  195. Yu HY, Li X (2014) Characterization of an organic solvent-tolerant thermostable glucoamylase from a halophilic isolate, Halolactibacillus sp. SK 71 and its application in raw starch hydrolysis for bioethanol production. Biotechnol Prog 30(6):1262–1268PubMedCrossRefGoogle Scholar
  196. Zhang G, Li S, Xue Y, Mao L, Ma Y (2012) Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles 16(1):35–43PubMedCrossRefGoogle Scholar
  197. Zhao Z, Zhang LY (2010) Screening and identification of a PCBs-degrading halophilic bacterium. Adv Mater Res 113–116:2177–2180CrossRefGoogle Scholar
  198. Zhao B, Wang H, Mao X, Li R (2009) Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58(3):205–210PubMedCrossRefPubMedCentralGoogle Scholar
  199. Zhao D, Kumar S, Zhou J, Wang R, Li M, Xiang H (2017) Isolation and complete genome sequence of Halorientalis hydrocarbonoclasticus sp. nov., a hydrocarbon-degrading haloarchaeon. Extremophiles 21(6):1081–1090PubMedCrossRefPubMedCentralGoogle Scholar
  200. Zvyagintseva IS, Poglazova MN, Gotoeva MT, Belyaev SS (2001) Effect on the medium salinity on oil degradation by nocardioform bacteria. Microbiology 70(6):652–656CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Enzyme and Microbial Biochemistry Laboratory, Department of ChemistryIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations