Skip to main content

Genetic Programming Approaches in Design and Optimization of Mechanical Engineering Applications

  • Chapter
  • First Online:
Nonlinear Approaches in Engineering Applications

Abstract

The development of modern engineering systems has introduced increasing levels of complexity and uncertainty over time. Combined with the design philosophy of engineering itself, this has given rise to many studies addressing the simple or multi-objective optimization problems present in these complex systems. Although conventional approaches can be applied to engineering optimization depends largely on the nature of problem, but they suffered to provide some quick and reasonable feedback to designers and cannot be challenging to further possible problems. Nevertheless, heuristic approaches that apply mixtures of different exploratory with or without traditional search and optimization methods are proposed to solve such complex problems. This chapter briefly provides the conventional optimizations and basic knowledge about the most widely implemented heuristic optimization techniques, as well as their application in optimization problems in mechanical engineering systems. It also presents the genetic programming that searches the space of possible computer programs which is extremely fit for solving the complex problem in truss structure design and optimization of mechanical engineering. Genetic programming employs tree structure of computer programs as individuals in its initial population, which gets evolved through generations by the algorithm operators to reach the optimum solution. To prove the ability of the genetic programming to solve complex mechanical engineering problems, a case study in design of truss with discrete design variables will be examined. In this example, genetic programming employs to find the optimum topology and discrete cross-section sizes of 10-bar truss problem which is a nonlinear problem subjected to different constraints such as the stability, maximum allowable stress and displacement in the truss nodes, and critical buckling load. As results and in comparison, with other state-of-art approaches, genetic programming finds a lighter truss structure with fewer elements because it could be constructed a tree-based expression to explore the search space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Maringer, D. (2006). Portfolio management with heuristic optimization. Berlin: Springer.

    MATH  Google Scholar 

  2. Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search. Simulation, 76, 60–68.

    Article  Google Scholar 

  3. Nazari-Heris, M., Mohammadi-Ivatloo, B., & Gharehpetian, G. B. (2018). A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives. Renewable and Sustainable Energy Reviews, 81, 2128–2143.

    Article  Google Scholar 

  4. Hao Jiang, H., Sidney Fels, S., & Little, J. J. (2007). A linear programming approach for multiple object tracking. Paper presented at the IEEE Conference on Computer Vision and Pattern Recognition.

    Google Scholar 

  5. Khayyam, H., Naebe, M., Bab-Hadiashar, A., Jamshidi, F., Li, Q., Atkiss, S., et al. (2015). Stochastic optimization models for energy management in carbonization process of carbon fiber production. Applied Energy, 158, 643–655.

    Article  Google Scholar 

  6. Bertsekas, D. P. (1999). Nonlinear programming. Cambridge: MIT.

    MATH  Google Scholar 

  7. Bellman, R. (2003). Dynamic programming. New York: Dover.

    MATH  Google Scholar 

  8. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  9. Fang, T.-P., & Piegl, L. (1992). Algorithm for Delaunay triangulation and convex-hull computation using a sparse matrix. Computer-Aided Design, 24, 425–436.

    Article  MATH  Google Scholar 

  10. Marti, K., & Kall, P. (1994). Stochastic programming. Berlin: Springer.

    MATH  Google Scholar 

  11. Goyal, A., Lu, W., & Lakshmanan, L. (2011). CELF++: optimizing the greedy algorithm for influence maximization in social networks. Paper presented at the Proceedings of the 20th international Hyderabad, India.

    Google Scholar 

  12. Fletcher, R. (2013). Practical methods of optimization (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  13. Khayyam, H., Naebe, M., Zabihi, O., Zamani, R., Atkiss, S., & Fox, B. (2015). Dynamic prediction models and optimization of polyacrylonitrile (PAN) stabilization processes for production of carbon fiber. IEEE Transaction on Industrial Informatics, 11, 887–896.

    Article  Google Scholar 

  14. Khayyam, H., Naebe, M., Bab-Hadiashar, A., Jamshidi, F., Li, Q., & Atkiss, S. (2014). Stochastic optimization models for energy management in carbonizationprocess of carbon fiber production. Applied Energy, 158, 643–655.

    Article  Google Scholar 

  15. Khayyam, H., & Bab-Hadiashar, A. (2014). Adaptive intelligent energy management system of plug-in hybrid electric vehicle. Energy, 69, 319–335.

    Article  Google Scholar 

  16. Gen, M., & Cheng, R. (1999). Genetic algorithms and engineering optimization. New York: Wiley.

    Book  Google Scholar 

  17. Vinther, K., Nielsen, R. J., Andersen, P., & Bendtsen, J. D. (2017). Optimization of interconnected absorption cycle heat pumps with micro-genetic algorithms. Journal of Process Control, 53, 26–36.

    Article  Google Scholar 

  18. Golkarnarenji, G., Naebe, M., Badii, K., Milani, A. S., Jazar, R., & Khayyam, H. (2019). A machine learning case study with limited data for prediction of carbon fiber mechanical properties. Computers in Industry, 105, 123–132.

    Article  Google Scholar 

  19. Golkarnarenji, G., Naebe, M., Church, J. S. S., Badii, K., Bab-Hadiashar, A., Atkiss, S., et al. (2017). Development of a predictive model for study of skin-core phenomenon in stabilization process of PAN precursor. Journal of Industrial and Engineering Chemistry, 49, 46–60.

    Article  Google Scholar 

  20. Golkarnarenji, G., Naebe, M., Badii, K., Milani, A. S., Jazar, R. N., & Khayyam, H. (2018). Support vector regression modelling and optimization of energy consumption in carbon fiber production line. Computers & Chemical Engineering, 109, 276–288.

    Article  Google Scholar 

  21. Matott, L. S., Bartelt-Hunt, S. L., Rabideau, A. J., & Fowler, K. R. (2006). Application of heuristic optimization techniques and algorithm tuning to multilayered sorptive barrier design. Environmental Science and Technology, 40, 6354–6360.

    Article  Google Scholar 

  22. Golkarnarenji, G., Naebe, M., Badii, K., Milani, A. S., Jazar, R. N., & Khayyam, H. (2018). Production of low cost carbon-fiber through energy optimization of stabilization process. Materials, 11, 385.

    Article  Google Scholar 

  23. Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  24. Box, F. (1978). A heuristic technique for assigning frequencies to mobile radio nets. IEEE Transactions on Vehicular Technology, 27, 57–74.

    Article  Google Scholar 

  25. Russell, S. J., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). London: Pearson.

    MATH  Google Scholar 

  26. Gavrilas, M. (2013). Heuristic and metaheuristic optimization techniques with application to power systems. Paper presented at the conference elected topics in mathematical methods and computational techniques in electrical engineering.

    Google Scholar 

  27. Kirkpatrick, C. D. G. S., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  28. Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers and Operations Research, 13, 533–549.

    Article  MathSciNet  MATH  Google Scholar 

  29. Rechenberg, I. (1965). Cybernetic solution path of an experimental problem. Technical Report Library Translation No. 1122. Royal Aircraft Establishment, Farnborough.

    Google Scholar 

  30. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press.

    Google Scholar 

  31. Jong, K. A. D. (1985). Genetic algorithms: A 10 year perspective. In Proceedings of the 1st internal conference on GAs and their applications (pp. 169–177).

    Google Scholar 

  32. Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  33. Kennedy, R. E. J. (1995). Particle swarm optimization. Paper presented at the proceedings of IEEE internal conference on neural networks.

    Google Scholar 

  34. Yang, X. S., & Deb, S. (2009). Engineering optimisation by Cuckoo search. https://www.library.cornell.edu/.

  35. Storm, K. P. R. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.

    Article  MathSciNet  Google Scholar 

  36. Koza, J. R. (1992). Genetic programming—On the programming of computers by means of natural selection. Cambridge: MIT.

    MATH  Google Scholar 

  37. Assimi, H., & Jamali, A. (2018). A hybrid algorithm coupling genetic programming and Nelder–Mead for topology and size optimization of trusses with static and dynamic constraints. Expert Systems with Applications, 95, 127–141.

    Article  Google Scholar 

  38. Jamali, A., Khaleghi, E., Gholaminezhad, I., Nariman-zadeh, N., Gholaminia, B., & Jamal-Omidi, A. (2014). Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data. Journal of Intelligent Manufacturing, 28, 149–163.

    Article  Google Scholar 

  39. Koza, J. R., Yu, J., Keane, M. A., & Mydlowec, W. (2000). Evolution of a controller with a free variable using genetic programming. Paper presented at the EuroGP 2000.

    Google Scholar 

  40. Poli, R., & Koza, J. (2014). “Genetic Programming”, Search methodologies. New York: Springer US.

    Google Scholar 

  41. Gholaminezhad, I., Jamali, A., & Assimi, H. (2014). Automated synthesis of optimal controller using multi-objective genetic programming for two-mass-spring system. Paper presented at the 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014.

    Google Scholar 

  42. Jamali, A., Khaleghi, E., Gholaminezhad, I., & Nariman-zadeh, N. (2014). Modelling and prediction of complex non-linear processes by using pareto multi-objective genetic programming. International Journal of Systems Science, 47, 1675–1688.

    Article  MATH  Google Scholar 

  43. Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., & Lanaz, G. (2003). Genetic programming IV: Routine human-competitive machine intelligence. Dordrecht: Kluwer Academic.

    MATH  Google Scholar 

  44. Koza, J. R., Keane, M. A., Yu, J., Mydlowec, W., & Bennett, F. H. (2000). Automatic synthesis of both the topology and parameters for a controller for a three-lag plant with a five-second delay using genetic programming. Paper presented at the EvoWorkshops.

    Google Scholar 

  45. Koza, J. R., Keanne, M. A., Yu, J., Bennett, F. H., & Mydlowec, W. (2000). Automatic creation of human-competitive programs and controllers by means of genetic programming. Genetic Programming and Evolvable Machines, 1, 121–164.

    Article  MATH  Google Scholar 

  46. Fukunaga, A., Hiruma, H., Komiya, K., & Iba, H. (2012). Evolving controllers for highlevel applications on a service robot: A case study with exhibition visitor flow control. Genetic Programming and Evolvable Machines, 13, 239–263.

    Article  Google Scholar 

  47. Kobayashi, T., Kimoto, T., & Imae, J. (2011). Genetic programming based output regulation via optimal inversion for nonlinear systems. Paper presented at the IEEE/SICE, International Symposium on System Integration.

    Google Scholar 

  48. Grosman, B., & Lewin, D. R. (2005). Automatic generation of lyapunov functions using genetic programming. IFAC Proceedings, 38, 75–80.

    Article  Google Scholar 

  49. Grosman, B., & Lewin, D. R. (2006). Lyapunov-based stability analysis automated by genetic programming. In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control (pp. 766–771).

    Chapter  Google Scholar 

  50. Chen, P., & Lu, Y. (2011). Automatic design of robust optimal controller for interval plants using genetic programming and Kharitonov Theorem. International Journal of Computational Intelligence Systems, 4, 826–836.

    Article  Google Scholar 

  51. Ibadulla, S. I., Shmalko, E. Y., & Daurenbekov, K. K. (2017). The comparison of genetic programming and variational genetic programming for a control synthesis problem on the model “Predator-victim”. Procedia Computer Science, 103, 155–161.

    Article  Google Scholar 

  52. Balandina, G. I. (2017). Control system synthesis by means of cartesian genetic programming. Procedia Computer Science, 103, 176–182.

    Article  Google Scholar 

  53. Dracopoulos, D. C., & Effraimidis, D. (2012). Genetic programming for generalised helicopter hovering control. 15th European Conference EuroGP, Málaga, Spain.

    Google Scholar 

  54. Bourmistrova, A., & Khantsis, S. (2010). Genetic programming in application to flight control system design optimisation. In New achievements in evolutionary computation. Rijeka: InTech.

    Google Scholar 

  55. Maher, R. A., & Mohamed, M. J. (2013). An enhanced genetic programming algorithm for optimal controller design. Intelligent Control and Automation, 4, 94–101.

    Article  Google Scholar 

  56. Alfaro-Cid, E., McGookin, E. W., Murray-Smith, D. J., & Fossen, T. I. (2008). Genetic programming for the automatic design of controllers for a surface ship. IEEE Transactions on Intelligent Transportation Systems, 9, 311–321.

    Article  Google Scholar 

  57. Barate, R., & Manzanera, A. (2007). Automatic design of vision-based obstacle avoidance controller using genetic programming. Paper presented at the 8th International Conference on Artificial Evolution, Tours, France.

    Google Scholar 

  58. Das, S., Pan, I., Das, S., & Gupta, A. (2012). Improved model reduction and tuning of fractional-order PIλDμ controllers for analytical rule extraction with genetic programming. ISA Transactions, 51, 237–261.

    Article  Google Scholar 

  59. Imae, J., Kikuchi, Y., Ohtsuki, N., Kobayashi, T., & Zhai, G. (2004). Design of nonlinear control systems by means of differential genetic programming. Paper presented at the 43rd IEEE Conference on Decision and Control.

    Google Scholar 

  60. Kumar, A. V. A., & Balasubramaniam, P. (2007). Optimal control for linear singular system using genetic programming. Applied Mathematics and Computation, 192, 78–89.

    Article  MathSciNet  MATH  Google Scholar 

  61. Nallasamy, K., & Ratnavelu, K. (2012). Optimal control for stochastic linear quadratic singular Takagi–Sugeno fuzzy delay system using genetic programming. Applied Soft Computing, 12, 2085–2090.

    Article  MATH  Google Scholar 

  62. Mwaura, J., & Keedwell, E. (2015). Evolving robotic neuro-controllers using gene expression programming. In 2015 IEEE symposium series on computational intelligence (pp. 1063–1072).

    Chapter  Google Scholar 

  63. Porkhial, S., Salehpour, M., Ashraf, H., & Jamali, A. (2015). Modeling and prediction of geothermal reservoir temperature behavior using evolutionary design of neural networks. Geothermics, 53, 320–327.

    Article  Google Scholar 

  64. Jamali, A., Ghamati, M., Ahmadi, B., & Nariman-zadeh, N. (2013). Probability of failure for uncertain control systems using neural networks and multi-objective uniform-diversity genetic algorithms (MUGA). Engineering Applications of Artificial Intelligence, 26, 714–723.

    Article  Google Scholar 

  65. Jamali, A., Nariman-zadeh, N., Darvizeh, A., Masoumi, A., & Hamrang, S. (2009). Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process. Engineering Applications of Artificial Intelligence, 22, 676–687.

    Article  Google Scholar 

  66. Hinchliffe, M. (2001). Dynamic Modelling Using Genetic Programming, PhD. Faculty of Engineering, University of Newcastle.

    Google Scholar 

  67. Willis, M., Hiden, H., Hinchliffe, M., McKay, B., & Barton, G. W. (1997). Systems modelling using genetic programming. Computers & Chemical Engineering, 21, S1161–S1166.

    Article  Google Scholar 

  68. Togan, N., & Baysec, S. (2010). Genetic programming approach to predict torque and brake specific fuel consumption of a gasoline engine. Journal of Applied Energy, 87, 3401–3408.

    Article  Google Scholar 

  69. Madar, J., Abonyi, J., & Szeifert, F. (2005). Genetic programming for the identification of nonlinear input-output models. Industrial and Engineering Chemical Research, 44, 3178–3186.

    Article  Google Scholar 

  70. Saghafi, H., & Arabloo, M. (2018). Development of genetic programming (GP) models for gas condensate compressibility factor determination below dew point pressure. Journal of Petroleum Science and Engineering, 171, 890–904.

    Article  Google Scholar 

  71. Cao, H., Kang, L., Chen, Y., & Yu, J. (2000). Evolutionary modeling of systems of ordinary differential equations with genetic programming. Genetic Programming and Evolvable Machines, 1, 309–337.

    Article  MATH  Google Scholar 

  72. Dorn, W. S. (1964). Automatic design of optimal structure. Journal de Mécanique, 3, 25–52.

    Google Scholar 

  73. Topping, B. H. V. (1983). Shape optimization of skeletal structures: A review. Journal of Structural Engineering, 109, 1933–1951.

    Article  Google Scholar 

  74. Schmit, L. A., & Miura, H. (1976). A new structural analysis/synthesis capability-ACCESS 1. AIAA Journal, 14, 661–671.

    Article  Google Scholar 

  75. Haftka, R. T., & Gürdal, Z. (1992). Elements of structural optimization. Berlin: Springer.

    Book  MATH  Google Scholar 

  76. Assimi, H., Jamali, A., & Nariman-zadeh, N. (2017). Sizing and topology optimization of truss structures using genetic programming. Swarm and Evolutionary Computation, 37, 90–103.

    Article  Google Scholar 

  77. Kicinger, R., Arciszewski, T., & Jong, K. D. (2005). Evolutionary computation and structural design: A survey of the state-of-the-art. Computers & Structures, 83, 1943–1978.

    Article  Google Scholar 

  78. Le, D. T., Bui, D.-K., Ngo, T. D., Nguyen, Q.-H., & Nguyen-Xuan, H. (2019). A novel hybrid method combining electromagnetism-like mechanism and firefly algorithms for constrained design optimization of discrete truss structures. Computers & Structures, 212, 20–42.

    Article  Google Scholar 

  79. Prayogo, D., Cheng, M.-Y., Wu, Y.-W., Herdany, A. A., & Prayogo, H. (2018). Differential Big Bang—Big Crunch algorithm for construction-engineering design optimization. Automation in Construction, 85, 290–304.

    Article  Google Scholar 

  80. Gholizadeh, S., Navid, R., & Shojaei, E. (2018). Improved black hole and multiverse algorithms for discrete sizing optimization of planar structures. Engineering Optimization.

    Google Scholar 

  81. Cao, H., Qian, X., Asce, M., Zhou, Y. L., & Yang, H. (2018). Applicability of subspace harmony search hybrid with improved Deb rule in optimizing trusses. Journal of Computing in Civil Engineering, 32, 04018021.

    Article  Google Scholar 

  82. Soh, C. K., & Yang, Y. (2000). Genetic programming-based approach for structural optimization. Journal of Computing in Civil Engineering, 14, 31–37.

    Article  Google Scholar 

  83. Zheng, Q. Z., Querin, O. M., & Barton, D. C. (2006). Geometry and sizing optimisation of discrete structure using the genetic programming method. Structural and Multidisciplinary Optimization, 31, 452–461.

    Article  Google Scholar 

  84. Assimi, H., Jamali, A., & Nariman-zadeh, N. (2018). Multi-objective sizing and topology optimization of truss structures using genetic programming based on a new adaptive mutant operator. Neural Computing and Applications, 1–21.

    Google Scholar 

  85. Dorn, W. S. (1964). Automatic design of optimal structures. Journal de Mecanique, 3, 25–52.

    Google Scholar 

  86. Deb, K. (2001). Design of truss-structures for minimum weight using genetic algorithms. Finite Elements in Analysis and Design, 37, 447–465.

    Article  MATH  Google Scholar 

  87. Deb, K., & Kalyanmoy, D. (2001). Multi-objective optimization using evolutionary algorithms. New York: Wiley.

    MATH  Google Scholar 

  88. Koza, J. R. (1992). Genetic programming: On the programming of computer programs by natural selection. Cambridge: MIT.

    MATH  Google Scholar 

  89. Mazzoni, S., McKenna, F., Scott, M. H., & Fenves, G. L. (2006). OpenSees command language manual. Richmond, CA: Pacific Earthquake Engineering Research (PEER) Center.

    Google Scholar 

  90. Li, L. J., Huang, Z. B., & Liu, F. (2009). A heuristic particle swarm optimization method for truss structures with discrete variables. Computers and Structures, 87, 435–443.

    Article  Google Scholar 

  91. Coello, C. A. C., Rudnick, M., & Christiansen, A. D. (1994). Using genetic algorithms for optimal design of trusses. In Sixth International conference on tools with artificial intelligence, proceedings (pp. 88–94).

    Google Scholar 

  92. Rajeev, S., & Krishnamoorthy, C. S. (1992). Discrete optimization of structures using genetic algorithms. Journal of Structural Engineering, 118, 1233–1250.

    Article  Google Scholar 

  93. Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2012). Mine blast algorithm for optimization of truss structures with discrete variables. Computers & Structures, 102-103, 49–63.

    Article  Google Scholar 

  94. Camp, C. V., & Farshchin, M. (2014). Design of space trusses using modified teaching- learning based optimization. Engineering Structures, 62-63, 87–97.

    Article  Google Scholar 

  95. Ho-Huu, V., Nguyen-Thoi, T., Vo-Duy, T., & Nguyen-Trang, T. (2016). An adaptive elitist differential evolution for optimization of truss structures with discrete design variables. Computers & Structures, 165, 59–75.

    Article  Google Scholar 

  96. Cheng, M.-Y., Prayogo, D., Wu, Y.-W., & Lukito, M. M. (2016). A hybrid harmony search algorithm for discrete sizing optimization of truss structure. Automation in Construction, 69, 21–33.

    Article  Google Scholar 

  97. Duc, T. L., Dac-Khuong, B., Tuan, D. N., Quoc-Hung, N., & Nguyen-Xuan, H. (2019). A novel hybrid method combining electromagnetism-like mechanism and firefly algorithms for constrained design optimization of discrete truss structures. Computers and Structures, 212, 20–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Khayyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khayyam, H., Jamali, A., Assimi, H., Jazar, R.N. (2020). Genetic Programming Approaches in Design and Optimization of Mechanical Engineering Applications. In: Jazar, R., Dai, L. (eds) Nonlinear Approaches in Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-18963-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18963-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18962-4

  • Online ISBN: 978-3-030-18963-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics