Skip to main content

The Nonlinear Pattern of Sea Levels: A Case Study of North America


Here I analyze the relative sea level signals from the tide gauges of North America. Linear and parabolic fittings are used to compute relative rates of rise and accelerations. There are 20 long-term-trend (LTT) tide gauges along the (Pacific) West Coast of North America. The average relative rate of rise is −0.38 mm/year, and the average acceleration is +0.0012 mm/year2. There are 33 LTT tide gauges of the (Atlantic) East Coast of North America. The average relative sea level rise is 2.22 mm/year, and the average acceleration is +0.0027 mm/year2.


  • Tide gauges
  • GPS
  • Sea levels
  • Subsidence
  • North America

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-18963-1_5
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-18963-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10
Fig. 5.11
Fig. 5.12
Fig. 5.13
Fig. 5.14
Fig. 5.15
Fig. 5.16
Fig. 5.17
Fig. 5.18
Fig. 5.19
Fig. 5.20
Fig. 5.21
Fig. 5.22
Fig. 5.23
Fig. 5.24
Fig. 5.25
Fig. 5.26
Fig. 5.27
Fig. 5.28
Fig. 5.29
Fig. 5.30
Fig. 5.31
Fig. 5.32
Fig. 5.33
Fig. 5.34
Fig. 5.35
Fig. 5.36
Fig. 5.37
Fig. 5.38
Fig. 5.39
Fig. 5.40
Fig. 5.41
Fig. 5.42


  1. Chambers, D., Merrifield, M. A., & Nerem, R. S. (2012). Is there a 60-year oscillation in global mean sea level? Geophysical Research Letters, 39, 18.

    CrossRef  Google Scholar 

  2. Schlesinger, M., & Ramankutty, N. (1994). An oscillation in the global climate system of period 65-70 years. Nature, 367, 723–726.

    CrossRef  Google Scholar 

  3. Galloway, D. L., Jones, D. R. & Ingebritsen, S. E. (1999). Land subsidence in the United States (Vol. 1182). United States Geological Survey. Retrieved from

  4. Galloway, D. L., Bawden, G. W., Leake, S. A., & Honegger D. G. (2008). Land subsidence hazards. In R. L. Baum, D. L. Galloway, & E. L. Harp (Eds.), Landslide and land subsidence hazards to pipelines (chapter 2). U.S. Geological Survey Open-File Report 2008-1164. Retrieved from

  5. National Research Council. (1991). Mitigating losses from land subsidence in the United States (58p). Washington, DC: National Academy Press.

    Google Scholar 

  6. Davis, G. H. (1987). Land subsidence and sea level rise on the Atlantic Coastal Plain of the United States. Environmental Geology and Water Sciences, 10(2), 67–80.

    CrossRef  Google Scholar 

  7. Johnson, D. W. (1917). Is the Atlantic coast sinking? Geographical Review, 3(2), 135–139.

    CrossRef  Google Scholar 

  8. Karegar, M. A., Dixon, T. H., & Engelhart, S. E. (2016). Subsidence along the Atlantic Coast of North America: Insights from GPS and late Holocene relative sea level data. Geophysical Research Letters, 43(7), 3126–3133.

    CrossRef  Google Scholar 

  9. United States Geological Survey. (2000). Land subsidence in the United States. United States Geological Survey Fact Sheet-087-00. Retrieved from

  10. Galloway, D. L., & Sneed, M. (2013). Analysis and simulation of regional subsidence accompanying groundwater abstraction and compaction of susceptible aquifer systems in the USA. Boletín de la Sociedad Geológica Mexicana, 65(1), 123–136.

    CrossRef  Google Scholar 

  11. Blewitt, G., Kreemer, C., Hammond, W. C., & Gazeaux, J. (2016). MIDAS robust trend estimator for accurate GNSS station velocities without step detection. Journal of Geophysical Research, 121.

    Google Scholar 

  12. Wöppelmann, G., & Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 54(1), 64–92.

    CrossRef  Google Scholar 

  13. Houston, J. R., & Dean, R. G. (2011). Sea-level acceleration based on U.S. tide gauges and extensions of previous global-gauge analyses. Journal of Coastal Research, 27, 409–417.

    CrossRef  Google Scholar 

  14. Boretti, A. (2012). Short term comparison of climate model predictions and satellite altimeter measurements of sea levels. Coastal Engineering, 60, 319–322.

    CrossRef  Google Scholar 

  15. Boretti, A. (2012). Is there any support in the long term tide gauge data to the claims that parts of Sydney will be swamped by rising sea levels? Coastal Engineering, 64, 161–167.

    CrossRef  Google Scholar 

  16. Parker, A. (2013). Sea level trends at locations of the United States with more than 100 years of recording. Natural Hazards, 65(1), 1011–1021.

    CrossRef  Google Scholar 

  17. Parker, A., & Ollier, C. D. (2017). California sea level rise: Evidence based forecasts vs. model predictions. Ocean & Coastal Management, 149, 198–209.

    CrossRef  Google Scholar 

  18. Parker, A., & Ollier, C. D. (2017). Short-term tide gauge records from one location are inadequate to infer global sea-level acceleration. Earth Systems and Environment, 1(2), 17.

    CrossRef  Google Scholar 

Download references


The author received no funding and declares no competing interests.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Alberto Boretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Boretti, A. (2020). The Nonlinear Pattern of Sea Levels: A Case Study of North America. In: Jazar, R., Dai, L. (eds) Nonlinear Approaches in Engineering Applications. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18962-4

  • Online ISBN: 978-3-030-18963-1

  • eBook Packages: EngineeringEngineering (R0)