Skip to main content

Early Management of Burn Patients and Fluid Resuscitation

  • Chapter
  • First Online:
Handbook of Burns Volume 1

Abstract

Appropriate early management of burns will lead to better outcomes. Of the “ABCs” of initial management of burns, this chapter covers “circulation” (“C”) and its complications. The pathophysiology of burn shock results from a massive capillary leak that involves alterations in the junctions between vascular endothelial cells. In addition, the glycocalyx that lines endothelial cells has been found to be a major regulator of capillary leak. The concepts of burn resuscitation are relatively straight forward—one must use a formula to estimate the starting rate and then all further adjustments are based on the patient’s physiologic response. In the past, crystalloids were the resuscitation fluids of choice, but that philosophy is changing to the increasing use of colloids. Studies suggest that colloids may reduce total fluid volumes and therefore reduce the complications of excessive fluid resuscitation. Finally, the management of resuscitation complications such as compartment syndrome is covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pruitt BA Jr. Protection from excessive resuscitation: “pushing the pendulum back”. J Trauma. 2000;49:567–8.

    Article  PubMed  Google Scholar 

  2. Saffle JR. The phenomenon of fluid creep in acute burn resuscitation. J Burn Care Res. 2007;28:382–95.

    Article  PubMed  Google Scholar 

  3. Komarova YA, Kruse K, Mehta D, Mali AB. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ Res. 2017;120:179–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Starling EH. On the absorption of fluids from connective tissue spaces. J Physiol. 1896;19:312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Demling RH. The burn edema process: current concepts. J Burn Care Rehabil. 2005;26:207–27.

    Article  PubMed  Google Scholar 

  6. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.

    Article  CAS  PubMed  Google Scholar 

  7. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369:1243–51.

    Article  CAS  PubMed  Google Scholar 

  8. Kottke MA, Walters TJ. Where’s the leak in vascular barriers? A review. Shock. 2016;46:S20–36.

    Article  Google Scholar 

  9. Ushiyama A, Kataoka H, Iijima T. Glycocalyx and its involvement in clinical pathophysiologies. J Intensive Care. 2016;4:59–70.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Johansson P, Stensballe J, Ostrowski S. Shock induced endotheliopathy (SHINE) in acute critical care illness—a unifying pathophysiologic mechanism. Crit Care. 2017;21:25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Greenhalgh DG. Burn resuscitation. J Burn Care Res. 2007;28:555–65.

    Article  PubMed  Google Scholar 

  12. Cartotto R, Greenhalgh DG, Cancio C. Burn state of the science. Fluid resuscitation. J Burn Care Res. 2017;38:e596–604.

    Article  PubMed  Google Scholar 

  13. Cartotto RC, Innes M, Musgrave MA, Gomez M, Cooper AB. How well does the Parkland Formula estimate actual fluid resuscitation volumes? J Burn Care Rehabil. 2002;23:258–65.

    Article  PubMed  Google Scholar 

  14. Cartotto R, Zhou A. Fluid creep: the pendulum hasn’t swung back yet! J Burn Care Res. 2010;31:551–9.

    Article  PubMed  Google Scholar 

  15. Engrav LH, Colescott PL, Kemalyan N, et al. A biopsy of the use of the Baxter Formula to resuscitate burns or do we do it like Charlie did? J Burn Care Rehabil. 2002;23:258–65.

    Article  Google Scholar 

  16. Paratz JD, Stockton K, Paratz ED, et al. Burn resuscitation—hourly urine output versus alternative endpoints: a systemic review. Shock. 2014;42:295–306.

    Article  PubMed  Google Scholar 

  17. Merrell SW, Saffle JR, Sullivan JJ, et al. Fluid resuscitation in thermally injured children. Am J Surg. 1986;152:664–8.

    Article  CAS  PubMed  Google Scholar 

  18. Graves TA, Cioffi WG, McManus WF, et al. Fluid resuscitation of infants and children with massive thermal injury. J Trauma. 1988;28:1656–9.

    Article  CAS  PubMed  Google Scholar 

  19. Greenhalgh DG. Burn resuscitation: the results of the ISBI/ABA survey. Burns. 2010;36:176–82.

    Article  PubMed  Google Scholar 

  20. Advanced Burn Life Support. Emergency Care of the Burn Patient. American Burn Association, Chicago, Illinois, 2018

    Google Scholar 

  21. Arlati S, Storti E, Pradella V, et al. Decreased fluid volume to reduce organ damage: a new approach to burn shock resuscitation. Resuscitation. 2007;72:371–8.

    Article  CAS  PubMed  Google Scholar 

  22. Walker TLJ, Urriza Rodriguiz DU, Coy K, et al. Impact of reduced resuscitation fluid on outcomes of children with 10-20% body surface area scalds. Burns. 2014;40:1581–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kulkarni S, Harrington DT, Heffernan D, et al. Tolerance of oliguria improves burn resuscitation. J Burn Care Res. 2013;34:S113.

    Google Scholar 

  24. Cancio L, Chavez S, Alvarado-Ortega M, et al. Predicting increased fluid requirements during the resuscitation of thermally injured patients. J Trauma. 2004;56:404–14.

    Article  PubMed  Google Scholar 

  25. Choi J, Cooper A, Gomez M, et al. The relevance of base deficits after burn injuries. J Burn Care Rehabil. 2000;21:499–504.

    Article  CAS  PubMed  Google Scholar 

  26. Cochran A, Edelman LS, Saffle JR, Morris SE. The relationship of serum lactate and base deficit in burn patients to mortality. J Burn Care Res. 2007;28:231–40.

    Article  PubMed  Google Scholar 

  27. Andel D, Kamolz LP, Roka J, et al. Base deficit and lactate: early predictors of morbidity and mortality in patients with burns. Burns. 2007;33:973–8.

    Article  CAS  PubMed  Google Scholar 

  28. Marik PE, Baran M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of the seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  29. Shippey CR, Appel PL, Shoemaker WC. Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med. 1984;12:107–12.

    Article  Google Scholar 

  30. Osman D, Ridel C, Ray P, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64–8.

    Article  PubMed  Google Scholar 

  31. Kumar A, Anel R, Bunnell E, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32:691–9.

    Article  PubMed  Google Scholar 

  32. Tokarik M, Sjöberg F, Balik M, et al. Fluid therapy LiDCO controlled trial-optimization of volume resuscitation of extensively burned patients through noninvasive continuous real-time hemodynamic monitoring LiDCO. J Burn Care Res. 2013;34:537–42.

    Article  PubMed  Google Scholar 

  33. Hoskins SL, Elgjo GI, Lu J, et al. Closed loop resuscitation of burn shock. J Burn Care Res. 2006;27:377–85.

    Article  PubMed  Google Scholar 

  34. Salinas J, Drew G, Gallagher J, et al. Closed-loop and decision-assist resuscitation of burn patients. J Trauma. 2008;64:S321–32.

    Article  PubMed  Google Scholar 

  35. Salinas J, Chung KK, Mann EA, et al. Computerized decision support system improves fluid resuscitation following severe burns: an original study. Crit Care Med. 2011;39:2031–8.

    Article  PubMed  Google Scholar 

  36. Sullivan SR, Freidrich JB, Engrav LH. Opioid creep is real and may be the cause of fluid creep. Burns. 2004;30:583–90.

    Article  PubMed  Google Scholar 

  37. Mackie DP, Spoelder EJ, Paauw RJ, et al. Mechanical ventilation and fluid retention in burn patients. J Trauma. 2009;67:1233–8.

    Article  PubMed  Google Scholar 

  38. Warden GD. Burn shock resuscitation. World J Surg. 1992;16:16–23.

    Article  CAS  PubMed  Google Scholar 

  39. Baxter CR, Shires T. Physiological response to crystalloid resuscitation of severe burns. Ann N Y Acad Sci. 1968;150:874–94.

    Article  CAS  PubMed  Google Scholar 

  40. Baxter CR, Marvin J, Curreri PW. Fluid and electrolyte therapy of burn shock. Heart Lung. 1973;2:707–13.

    CAS  PubMed  Google Scholar 

  41. Pruitt BA Jr. Fluid and electrolyte replacement in the burned patient. Surg Clin North Am. 1978;58:1291–312.

    Article  PubMed  Google Scholar 

  42. Pruitt BA Jr. The burn patient: II. Later care and complications of thermal injury. Curr Probl Surg. 1979;16:1–95.

    PubMed  Google Scholar 

  43. Demling RH, Smith M, Bodai B, et al. Comparison of postburn capillary permeability in soft tissue and lung. J Burn Care Rehabil. 1981;15:86–92.

    Article  Google Scholar 

  44. Harms BA, Bodai BI, Kramer GC, Demling RH. Microvascular fluid and protein flux in pulmonary and systemic circulations after thermal injury. Microvasc Res. 1982;23:77–86.

    Article  CAS  PubMed  Google Scholar 

  45. Vlachou E, Moieman NS. Microalbuminemia: a marker of endothelial dysfunction in thermal injury. Burns. 2006;32:1009–16.

    Article  CAS  PubMed  Google Scholar 

  46. Cochrane Injuries Group. Human albumin administration in critically ill patients: systematic review of randomized controlled trials. BMJ. 1998;317:235–40.

    Article  Google Scholar 

  47. Perel P, Roberts I. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2012;(6):CD000567. https://doi.org/10.1002/14651858.CD000567.pub5.

  48. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;(2):CD000567. https://doi.org/10.1002/14651858.CD000567.pub6.

  49. The SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.

    Article  Google Scholar 

  50. Charpentier J, Mira JP. EARSS study group. Efficacy and tolerance of hyperoncotic albumin administration in septic shock patients: the EARSS Study. Intensive Care Med. 2011;37(Suppl 1):S115.

    Google Scholar 

  51. Caironi P, Tognoni G, Masson S, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370:1412–21.

    Article  CAS  PubMed  Google Scholar 

  52. Wieddermann CJ, Joannidid M. Albumin replacement in severe sepsis or septic shock. N Engl J Med. 2014;371:83–4.

    Article  Google Scholar 

  53. Recinos PR, Hartford CA, Ziffren SE. Fluid resuscitation of burn patients comparing a crystalloid with a colloid containing solution: a prospective study. J Iowa Med Soc. 1975;65:426–32.

    CAS  PubMed  Google Scholar 

  54. Jelenko C 3rd, Williams JB, Wheeler ML, et al. Studies in shock and resuscitation, I: use of a hypertonic, albumin-containing, fluid demand regimen (HALFD) in resuscitation. Crit Care Med. 1979;7:157–67.

    Article  PubMed  Google Scholar 

  55. Goodwin CW, Dorethy J, Lam V, Pruitt BA Jr. Randomized trial of efficacy of crystalloid and colloid resuscitation on hemodynamic response and lung water following thermal injury. Ann Surg. 1983;197:520–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cooper AB, Cohn SM, Zhang HS, Hanna K, Stewart TE, Slutsky AS, ALBUR Investigators. Five percent albumin for adult burn shock resuscitation: lack of effect on daily multiple organ dysfunction score. Transfusion. 2006;46:80–9.

    Article  CAS  PubMed  Google Scholar 

  57. Cochran A, Morris SE, Edelman LS, Saffle JR. Burn patient characteristics and outcomes following resuscitation with albumin. Burns. 2007;33:25–30.

    Article  PubMed  Google Scholar 

  58. Ennis JL, Chung KK, Renz EM, et al. Joint Theater Trauma System implementation of burn resuscitation guidelines improves outcomes in severely burned military casualties. J Trauma. 2008;64(2 Suppl):S146–51; discussion S151–2.

    Article  PubMed  Google Scholar 

  59. Dulhunty JM, Boots RJ, Rudd MJ, et al. Increased fluid resuscitation can lead to adverse outcomes in major burn injured patients, but low mortality is achievable. Burns. 2008;34:1090–7.

    Article  PubMed  Google Scholar 

  60. Lawrence A, Faraklas I, Watkins H, et al. Colloid administration normalizes resuscitation ratio and ameliorates “fluid creep”. J Burn Care Res. 2010;31:40–7.

    Article  PubMed  Google Scholar 

  61. Faraklas I, Lam V, Cochran A, et al. Colloid normalizes resuscitation ratio in pediatric burns. J Burn Care Res. 2011;32:91–7.

    Article  PubMed  Google Scholar 

  62. Park SH, Hemilla MR, Whal WL. Early albumin use improves mortality in difficult to resuscitate burn patients. J Trauma. 2012;73:1294–7.

    Article  CAS  Google Scholar 

  63. Navickis RJ, Greenhalgh DG, Wilkes MM. Albumin in burn shock resuscitation: a meta-analysis of controlled clinical studies. J Burn Care Res. 2016;37:e268–78.

    Article  PubMed  Google Scholar 

  64. Eljaiek R, Heylbroeck C, Dubois M-J. Albumin administration for fluid resuscitation in burn patients: a systemic review and meta-analysis. Burns. 2017;43:17–24.

    Article  PubMed  Google Scholar 

  65. Waters LM, Christenson MA, Sato RM. Hetastarch: an alternative colloid in burn shock management. J Burn Care Rehabil. 1989;10:11–5.

    Article  CAS  PubMed  Google Scholar 

  66. Waxman K, Holness R, Tominaga G, et al. Hemodynamic and oxygen transport effects of pentastarch in burn resuscitation. Ann Surg. 1989;209:341–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vlachou E, Gosling P, Moieman NS. Hydroxyethylstarch supplementation in burn resuscitation—a prospective randomized controlled trial. Burns. 2010;36:984–91.

    Article  CAS  PubMed  Google Scholar 

  68. Béchir M, Puhan MA, Neff SB, et al. Early fluid resuscitation with hyperoncotic hydroxyethyl starch 200/0.5 (10%) in severe burn injury. Crit Care. 2010;14:R123.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Béchir M, Puhan MA, Fasshauer M, Schuepbach RA, Stocker R, Neff TA. Early fluid resuscitation with hydroxyl ethyl starch 130/0.4 (6%) in severe burn injury: a randomized controlled double blind clinical trial. Crit Care. 2013;17:R299.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.

    Article  CAS  PubMed  Google Scholar 

  71. Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–34.

    Article  CAS  PubMed  Google Scholar 

  72. O’Mara MS, Slater H, Goldfarb IW, Caushaj PF. A prospective, randomized evaluation of intra-abdominal pressures with crystalloid and colloid resuscitation in burn patients. J Trauma. 2005;58:1011–8.

    Article  PubMed  Google Scholar 

  73. Matsuda T, Tanaka H, Williams S, et al. Reduced fluid volume requirements for resuscitation of third degree burns with high dose vitamin C. J Burn Care Rehabil. 1991;12:525–32.

    Article  CAS  PubMed  Google Scholar 

  74. Matsuda T, Tanaka H, Shimazaki S, et al. High-dose vitamin C therapy for extensive deep dermal burns. Burns. 1992;18:127–31.

    Article  CAS  PubMed  Google Scholar 

  75. Sakurai M, Tanaka H, Matsuda T, et al. Reduced resuscitation fluid volume for second degree experimental burns with delayed initiation of vitamin C therapy (beginning 6 h after injury). J Surg Res. 1997;73:24–7.

    Article  CAS  PubMed  Google Scholar 

  76. Tanaka H, Matsuda T, Miyagantani Y, et al. Reduced resuscitation volumes in severely burned patients using ascorbic acid administration. A randomized prospective study. Arch Surg. 2000;135:326–31.

    Article  CAS  PubMed  Google Scholar 

  77. Kahn SA, Beers RJ, Lentz CW. Resuscitation after severe burn injury using high-dose ascorbic acid: a retrospective review. J Burn Care Res. 2011;32:110–7.

    Article  PubMed  Google Scholar 

  78. Lentz CW, Huelskamp S, Reid D. Adjuvant high dose ascorbic acid reduces both the volume of burn resuscitation fluids and the time to complete resuscitation in burn shock. J Burn Care Res. 2014;46:S107.

    Google Scholar 

  79. Lin J, Falwell S, Greenhalgh DG, et al. High dose ascorbic acid for burn shock resuscitation may not improve outcomes. J Burn Care Res. 2018;39(5):708–12.

    Article  PubMed  Google Scholar 

  80. Warden GD, Strata RJ, Saffle JR, et al. Plasma exchange therapy in patients failing to resuscitate from burn shock. J Trauma. 1983;23:945–51.

    Article  CAS  PubMed  Google Scholar 

  81. Kravitz M, Warden GD, Sullivan JJ, Saffle JR. A randomized trial of plasma exchange in the treatment of burn shock. J Burn Care Rehabil. 1989;10:17–26.

    Article  CAS  PubMed  Google Scholar 

  82. Strata RJ, Saffle JR, Kravitz M, et al. Exchange transfusion therapy in pediatric burn shock. Circ Shock. 1984;12:203–12.

    Google Scholar 

  83. Klein MB, Edwards JA, Kramer CB, et al. The beneficial effects of plasma exchange after severe burn injury. J Burn Care Res. 2009;30:243–8.

    Article  PubMed  Google Scholar 

  84. Neff LP, Alman JM, Holmes JH. The use of therapeutic plasma exchange (TPE) in the setting of refractory burn shock. Burns. 2010;36:372–8.

    Article  PubMed  Google Scholar 

  85. Sullivan SR, Ahmadi AJ, Singh CN, et al. Elevated orbital pressure: another untoward effect of massive resuscitation after burn injury. J Trauma. 2006;60:72–6.

    Article  PubMed  Google Scholar 

  86. Brown RL, Greenhalgh DG, Kagan RJ, Warden GD. The adequacy of limb escharotomies/fasciotomies after referral to a major burn center. J Trauma. 1994;37:916–20.

    Article  CAS  PubMed  Google Scholar 

  87. Greenhalgh DG, Warden GD. The importance of intra-abdominal pressure measurements in burned children. J Trauma. 1994;36:685–90.

    Article  CAS  PubMed  Google Scholar 

  88. Latenser BA, Kowel-Vern A, Kimball D, et al. A pilot study comparing percutaneous decompression with decompressive laparotomy for acute abdominal compartment syndrome in thermal injury. J Burn Care Rehabil. 2002;23:190–5.

    Article  PubMed  Google Scholar 

  89. Hobson KG, Young KM, Ciraulo A, Palmieri TL, Greenhalgh DG. Release of abdominal compartment syndrome improves survival in patients with burn injury. J Trauma. 2002;53:1129–34.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Greenhalgh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greenhalgh, D.G. (2020). Early Management of Burn Patients and Fluid Resuscitation. In: Jeschke, M., Kamolz, LP., Sjöberg, F., Wolf, S. (eds) Handbook of Burns Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-18940-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18940-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18939-6

  • Online ISBN: 978-3-030-18940-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics