Ectomycorrhizal Fungi: Role as Biofertilizers in Forestry

  • José Alfonso Domínguez-NúñezEmail author
  • Marta Berrocal-Lobo
  • Ada S. Albanesi
Part of the Soil Biology book series (SOILBIOL, volume 55)


Ectomycorrhizal fungi (ECMF) play a fundamental role in the nutrient cycle in terrestrial ecosystems, especially in forest ecosystems. In this chapter, the value of ECMF species is reviewed from a global framework, not only to increase the production of edible fruit bodies and biomass of plants but also for the regular practices of reforestation and restoration of ecosystems, with implicit applications in biofertilization, bioremediation, and control of soil pathogens. The valuation of the ECMF in forest management must be considered fundamental for innovation and sustainable development. Ecological functions and bioactive compounds of the ECMF of interest to mankind are briefly reviewed. The direct implications of the ECMFs in forestry are described. To do so, its role as a biotechnological tool in forest nursery production is briefly analyzed, as well as the role of MHB bacteria (mycorrhizal helper bacteria). Subsequently, the direct role as biofertilizers of the ECMF in forest management is discussed: reforestation, plantation management, and ecosystem restoration.


Nutrient cycle Ecosystem restoration Reforestation Sustainable development 


  1. Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114CrossRefGoogle Scholar
  2. Andre S, Galiana A, Le Roux C, Prin Y, Neyra M, Duponnois R (2005) Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth. Mycorrhiza 15:357–364PubMedCrossRefPubMedCentralGoogle Scholar
  3. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  4. Avis TJ, Gravel V, Autoun H, Tweddel RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740CrossRefGoogle Scholar
  5. Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464CrossRefGoogle Scholar
  6. Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) (2009) Mycorrhizas functional processes and ecological impact. Springer, BerlinGoogle Scholar
  7. Azul AM, Sousa JP, Agerer R, Martín MP, Freitas H (2010) Land use practices and ectomycorrhizal fungal communities from oak woodlands dominated by Quercus suber L. considering drought scenarios. Mycorrhiza 20:73–88PubMedCrossRefPubMedCentralGoogle Scholar
  8. Azul AM, Nunes J, Ferreira I, Coelho AS, Verissimo P, Trovao J, Campos A, Castro P, Freitas H (2014) Valuing native ectomycorrhizal fungi as a mediterranean forestry component for sustainable and innovative solutions. Botany-Botanique 92(2):161–171CrossRefGoogle Scholar
  9. Barea JM, Azcón R, Azcón-Aguilar C (2005) Interactions between mycorrhizal fungi and bacteria to improve plant nutrient cycling and soil structure. In: Varma A, Buscot F (eds) Microorganisms in soils: roles in genesis and functions, vol 3. Springer, Heidelberg, pp 195–212CrossRefGoogle Scholar
  10. Bencivenga M (1998) Ecology and cultivation of Tuber magnatum Pico. In: Proceedings of the first international meeting on ecology, physiology and cultivation of edible mycorrhizal mushrooms. Swedish University of Agricultural Sciences, Uppsala, Sweden, 3–4 JulyGoogle Scholar
  11. Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol Ecol 39:219–227PubMedPubMedCentralGoogle Scholar
  12. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant – fungus interactions in mycorrhizal symbiosis. Nat Commun 27:1–48. CrossRefGoogle Scholar
  13. Brulé C, Frey-Klett P, Pierrat JC, Courier S, Gérard F, Lemoine MC, Rousselet J, Somer J, Garbaye J (2001) Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and effect of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem 33:1683–1694CrossRefGoogle Scholar
  14. Budi SW, Van Tuinen D, Martinotti MG, Gianiazzi S (1999) Isolation from the Sorghum bicolour mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soil-borne fungal pathogens. Appl Environ Microbiol 65:148–150Google Scholar
  15. Campbell GL, Bedford MR (1992) Enzyme applications for monogastric feeds: a review. Can J Anim Sci 72:449–466CrossRefGoogle Scholar
  16. Cannel E, Moo-Young M (1980) Solid-state fermentation systems. Process Biochem 15:24–28Google Scholar
  17. Carpenter-Boggs L, Loynachan TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol Biochem 27:1445–1451CrossRefGoogle Scholar
  18. Casieri L, Anastasi A, Prigione V, Varese GC (2010) Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity. Antonie Van Leeuwenhoek 98:483–504PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chang ST, Hayes WA (1978) The biology and cultivation of edible mushrooms. Academic Press, New YorkGoogle Scholar
  20. Chevalier G (1998) The truffle cultivation in France: assessment of the situation after 25 years of intensive use of mycorrhizal seedlings. In: Proceedings of the first international meeting on ecology, physiology and cultivation of edible mycorrhizal mushrooms, Swedish University of Agricultural Sciences, Uppsala, Sweden, 3–4 JulyGoogle Scholar
  21. Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24CrossRefGoogle Scholar
  22. Courty PE, Franc A, Garbaye J (2010) Temporal and functional pattern of secreted enzyme activities in an ectomycorrhizal community. Soil Biol Biochem 42(11):2022–2025CrossRefGoogle Scholar
  23. Dahlberg A, Genney DR, Heilmann-Clausen J (2010) Developing a comprehensive strategy for fungal conservation in Europe: current status and future needs. Fungal Ecol 3(2):50–64CrossRefGoogle Scholar
  24. Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, Pierrat JC, Sarniguet A, Garbaye J, Martin F, Frey-Klett P (2007) The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175:743–755PubMedCrossRefPubMedCentralGoogle Scholar
  25. Domínguez JA, Selva J, Rodríguez Barreal JA, Saiz de Omeñaca JA (2006) The influence of mycorrhization with Tuber melanosporum in the afforestation of a Mediterranean site with Quercus ilex and Quercus faginea. For Ecol Manag 231:226–233CrossRefGoogle Scholar
  26. Domínguez JA, Martin A, Anriquez A, Albanesi A (2012) The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings. Mycorrhiza 22(6):429–436PubMedCrossRefPubMedCentralGoogle Scholar
  27. Donnini D, Gargano ML, Perini C, Savino E, Murat C, Di Piazza S, Altobelli E, Salerni E, Rubini A, Rana GL, Bencivenga M, Venanzoni R, Zambonelli A (2013) Wild and cultivated mushrooms as a model of sustainable development. Plant Biosyst 147(1):226–236CrossRefGoogle Scholar
  28. Duñabeitia M, Rodríguez N, Salcedo I, Sarrionandia E (2004) Field mycorrhization and its influence on the establishment and development of the seedlings in a broadleaf plantation in the Basque country. For Ecol Manag 195:129–139CrossRefGoogle Scholar
  29. Duponnois R, Garbaye J (1990) Some mechanisms involved in growth stimulation of ectomycorrhizal fungi by bacteria. Can J Bot 68:2148–2152CrossRefGoogle Scholar
  30. Duponnois R, Garbaye J (1991) Mycorrhizal helper bacteria associated with the Douglas fir Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions. Ann For Sci 48:239–251CrossRefGoogle Scholar
  31. FAO (Food and Agricultural Organization of the United Nations) (2010) Global forest resources assessment, 2010. Main report. FAO Forestry Paper 163. Food and Agricultural Organization of the United Nations, Rome, ItalyGoogle Scholar
  32. Feldmann F, Hutter I, Schneider C (2009) Best production practice of arbuscular mycorrhizal inoculum. In: Varma A, Kharkwal AC (eds) Symbiotic fungi: principles and practice, vol 18. Springer, Berlin, pp 319–336CrossRefGoogle Scholar
  33. Fitter AH (2005) Darkens visible: reflections on underground ecology. J Ecol 93:231–243CrossRefGoogle Scholar
  34. Frey-Klett P, Garbaye J, Tarkka M (2007) The Mycorrhiza helper bacteria revisited. Tansley review. New Phytol 176:22–36PubMedCrossRefPubMedCentralGoogle Scholar
  35. Fries N, Birraux D (1980) Spore germination in Hebeloma stimulated by living plant roots. Exp Dermatol 36:1056–1057Google Scholar
  36. Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192PubMedCrossRefPubMedCentralGoogle Scholar
  37. Garbaye J (1990) Use of mycorrhizas in forestry. In: Strullu DG (ed) Les mycorhizes des arbres et plantes cultivées. Lavoisier, Paris, pp 197–248Google Scholar
  38. Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128(2):197–210CrossRefGoogle Scholar
  39. Garbaye J, Duponnois R (1992) Specificity and function of mycorrhization helper bacteria (MHB) associated with the Pseudotsuga menziesii–Laccaria laccata symbiosis. Symbiosis 14:335–344Google Scholar
  40. Geml J, Timling I, Robinson CH, Lennon N, Nusbaum HC, Brochmann C, Noordeloos ME, Taylor DL (2011) An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA. J Biogeogr 39(1):74–88CrossRefGoogle Scholar
  41. Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and growth yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida and Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977CrossRefGoogle Scholar
  42. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Mycrobial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616CrossRefGoogle Scholar
  43. Hata S, Kobae Y, Banba M (2010) Interactions between plants and arbuscular mycorrhizal fungi. In: Kwang WJ (ed) International review of cell and molecular biology, vol 281. Academic Press, New York, pp 1–48Google Scholar
  44. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598CrossRefGoogle Scholar
  45. Hortal S, Pera J, Parladé J (2009) Field persistence of the edible ectomycorrhizal fungus Lactarius deliciosus: effect of inoculation strain, initial colonization level, and site characteristics. Mycorrhiza 19:167–177PubMedCrossRefPubMedCentralGoogle Scholar
  46. Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hu HJ, Li PZ, Lin T, Hang BQ, Guo YW (1994) Effects of polysaccharide of Tuber sinense on tumor and immune system of mice. J Chin Pharmaceut Univ 125:289–292Google Scholar
  48. Keller S, Schneider K, Sussmuth RD (2006) Structure elucidation of auxofuran, a metabolite involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. J Antibiot (Tokyo) 59:801–803CrossRefGoogle Scholar
  49. Koide R, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163PubMedCrossRefPubMedCentralGoogle Scholar
  50. Kreisel H, Lindeguis U, Hurak M (1990) Distribution, ecology, and immunosuppressive properties of Tricholoma populinum (Basidiomycetes). Zentralbl Mikrobiol 145:393–396PubMedCrossRefPubMedCentralGoogle Scholar
  51. Le Tacon F, Jung G, Mugnier J, Michelot P (1983) Efficiency in a forest nursery of an inoculant of an ectomycorrhizal fungus produced in a fermentor and entrapped in polymetric gels. Ann For Sci 40:165–176CrossRefGoogle Scholar
  52. Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82(8):1016–1045CrossRefGoogle Scholar
  53. Liese A, Seelbach K, Wandrey C (2000) Industrial biotransformations. Wiley-VCH, Weinheim (Federal Republic of Germany)Google Scholar
  54. Linderman RG (1988) Mycorrhizal interactions with the rhizosphere micoflora – the rhizosphere effect. Phytopathology 78:366–371Google Scholar
  55. Machuca A (2011) Metal-chelating agents from ectomycorrhizal fungi and their biotechnological potential. In: Rai M, Varma A (eds) Diversity and biotechnology of ectomycorrhizae. Soil biology, vol 25. Springer, Berlin, pp 347–369CrossRefGoogle Scholar
  56. Maier A, Riedlinger J, Fiedler HP, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycol Prog 3(2):129–136CrossRefGoogle Scholar
  57. Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:491206. CrossRefGoogle Scholar
  58. Martin F, Bonito G (2012) Ten years of genomics for ectomycorrhizal fungi: what have we achieved and where are we heading? In: Zambonelli A, Bonito GM (eds) Edible ectomycorrhizal mushrooms. Current knowledge and future prospects. Soil biology, vol 34. Springer, Berlin, pp 383–401CrossRefGoogle Scholar
  59. Marx DH (1980) Ectomycorrhizal fungus inoculations: a tool for improving forestation practices. In: Mikola P (ed) Tropical mycorrhiza research. Oxford University Press, London, pp 13–71Google Scholar
  60. Marx DH, Cordell CE (1989) The use of specific ectomycorrhizas to improve artificial forestation practices. In: Whipps JM, Lumsden RD (eds) Biotechnology of fungi for improving plant growth: symposium of the British. Cambridge University Press, Cambridge, pp 1–25Google Scholar
  61. McAfee BJ, Fortin JA (1986) Competitive interactions of ectomycorrhizal mycobionts under field conditions. Can J Bot 64:848–852CrossRefGoogle Scholar
  62. Meharg AA, Cairney JWG (2000) Ectomycorrhizas: extending the capacities of rhizosphere remediation? Soil Biol Biochem 32:1475–1484CrossRefGoogle Scholar
  63. Miransari M (2011) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92:875–885PubMedCrossRefPubMedCentralGoogle Scholar
  64. Mizuno T, Kwai M (1992) Chemistry and biochemistry of mushroom fungi. Gakai-shupan Center, TokyoGoogle Scholar
  65. Molina R, Palmer JG (1982) Isolation, maintenance, and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The Americal Phytopathological Society, St Paul, MN, pp 115–129Google Scholar
  66. Murat C, Martin F (2008) Sex and truffles: first evidence of Périgord black truffle outcrosses. New Phytol 180:260–263PubMedCrossRefPubMedCentralGoogle Scholar
  67. Olivier JM (2000) Progress in the cultivation of truffles. In: Van Griensven LJLD (ed) Mushroom science XV: science and cultivation of edible fungi, vol 2. Balkema, Rotterdam (Netherlands), pp 937–942Google Scholar
  68. Olivier JM, Savignac JC, Sourzat P (1996) Truffe et trufficulture. Ed Fanlac, Perigueux, FranceGoogle Scholar
  69. Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. CAB International, WallingfordGoogle Scholar
  70. Pointing SB, Vrijmoed LLP (2000) Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase. World J Microbiol Biotechnol 16:317–318CrossRefGoogle Scholar
  71. Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris–Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751CrossRefGoogle Scholar
  72. Prieto I, Roldán A, Huygens D, Alguacil MM, Navarro-Cano JA, Querejeta JI (2016) Species-specific roles of ectomycorrhizal fungi in facilitating interplant transfer of hydraulically redistributed water between Pinus halepensis saplings and seedlings. Plant Soil 406:15–27CrossRefGoogle Scholar
  73. Reddy CA, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. In: Sariaslani S, Gadd GM (eds) Advances in Applied Microbiology, vol 82. Elsevier, Burlington, MA, pp 53–113Google Scholar
  74. Reis FS, Pereira E, Barros L, Sousa MJ, Martíns A, Ferreira ICFR (2011) Biomolecule profiles in inedible wild mushrooms with antioxidant value. Molecules 16:4328–4338PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ribeiro R, Rangel J, Valentão P, Baptista P, Seabra RM, Andrade PB (2006) Contents of carboxylic acids and two phenolics and antioxidant activity of dried Portuguese wild edible mushrooms. J Agric Food Chem 54:8530–8537PubMedCrossRefPubMedCentralGoogle Scholar
  76. Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557PubMedPubMedCentralCrossRefGoogle Scholar
  77. Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45Google Scholar
  78. Rossi MJ, Furigo A, Oliveira VL (2007) Inoculant production of ectomycorrhizal fungi by solid and submerged fermentations. Food Technol Biotechnol 45:277–286Google Scholar
  79. Saravanan RS, Natarajan K (1996) Effect of Pisolithus tinctorius on the nodulation and nitrogen fixing potential of Acacia nilotica seedlings. Kavaka 24:41–49Google Scholar
  80. Saravanan RS, Natarajan K (2000) Effect of ecto- and endomycorrhizal fungi along with Bradyrhizobium sp. on the growth and nitrogen fixation in Acacia nilotica seedlings in the nursery. J Trop For Sci 12:348–356Google Scholar
  81. Savoie JM, Largeteau ML (2011) Production of edible mushrooms in forests: trends in development of a mycosilviculture. Appl Microbiol Biotechnol 89:971–979PubMedCrossRefPubMedCentralGoogle Scholar
  82. Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216PubMedCrossRefPubMedCentralGoogle Scholar
  83. Seneviratne G, Zavahir J, Bandara W, Weerasekara M (2008) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743CrossRefGoogle Scholar
  84. Sharma R (2017) Ectomycorrhizal mushrooms: their diversity, ecology and practical applications. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza – function, diversity, state of the art. Springer, Berlin, pp 99–131CrossRefGoogle Scholar
  85. Sim M-Y, Eom A-H (2006) Effects of ectomycorrhizal fungi on growth of seedlings of Pinus densiflora. Mycobiology 34:191–195PubMedPubMedCentralCrossRefGoogle Scholar
  86. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London, p 787Google Scholar
  87. Sun YP, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay RD (1999) Exudation–reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and other microorganisms. Mycorrhiza 9:137–144CrossRefGoogle Scholar
  88. Suz L, Azul AM, Pino-Bodas R, Martín MP (2012) Ectomycorrhizal fungi in biotechnology: present and future perspectives. In: Kumar A, Prasad RS (eds) Environment and biotechnology. Lambert Academic Publishing, AG & CKG, pp 472–542Google Scholar
  89. Tibbett M, Cairney JWG (2007) The cooler side of mycorrhizas: their occurrence and functioning at low temperatures. Can J Bot 85:51–62CrossRefGoogle Scholar
  90. Trappe JM (1969) Studies on Cenococcum graniforme. An efficient method for isolation from sclerotia. Can J Bot 47:1389–1390CrossRefGoogle Scholar
  91. Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8:1997–2011PubMedCrossRefPubMedCentralGoogle Scholar
  92. Vestberg M, Kukkonen S, Saari K, Parikka P, Huttunen J, Tainio L et al (2004) Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl Soil Ecol 27:243–258CrossRefGoogle Scholar
  93. Wang HX, Ngai HK, Ng TB (2003) A ubiquitin-like peptide with ribonuclease activity against various polyhomoribonucleotides from the yellow mushroom Cantharellus cibarius. Peptides 24:509–513PubMedCrossRefPubMedCentralGoogle Scholar
  94. Wiensczyk AM, Gamiet D, Durall DM, Jones MD, Simard SW (2002) Ectomycorrhizae and forestry in British Columbia: a summary of current research and conservation strategies. BCJ Ecosyst Manag 2:1–20Google Scholar
  95. Xie ZP, Staehelin C, Vierheilig H, Iemkena W, Jabbouri S, Broughton WJ, Vogeli-Lange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525PubMedPubMedCentralCrossRefGoogle Scholar
  96. Zhou AD, Wu XQ, Shen L, Xu XL, Huang L, Ye JR (2014) Profiling of differentially expressed genes in ectomycorrhizal fungus Pisolithus tinctorius responding to mycorrhiza helper Brevibacillus reuszeri MPt17. Biol Sect Cell Mol Biol 69(4):435–442Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José Alfonso Domínguez-Núñez
    • 1
    Email author
  • Marta Berrocal-Lobo
    • 1
  • Ada S. Albanesi
    • 2
  1. 1.E.T.S.I de Montes, Forestal y del Medio Natural, Universidad Politécnica de MadridMadridSpain
  2. 2.Departamento de Microbiología, Facultad de Agronomía y AgroindustriasUniversidad Nacional Santiago del EsteroSantiago del EsteroArgentina

Personalised recommendations