Advertisement

Potential Applications of Algae-Based Bio-fertilizer

  • Probir DasEmail author
  • Shoyeb Khan
  • Afeefa Kiran Chaudhary
  • Mohammad AbdulQuadir
  • Mehmoud Ibrahim Thaher
  • Hareb Al-Jabri
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 55)

Abstract

To meet the growing demand for food, the production and application of synthetic fertilizers, pesticides, and other chemicals have intensified, which consequently pollute the environment and pose a serious threat to all living beings. Furthermore, agricultural land is losing its fertility due to intensive agricultural practices and climate changes. Various microorganisms such as bacteria, algae, fungi, etc. are receiving much attention as environmental-friendly alternatives to synthetic chemicals because of their ability to improve the soil fertility, fix atmospheric nitrogen for plant availability, produce plant growth hormones and biocides, etc. This chapter will explore the potential role of microalgae and cyanobacteria as bio-fertilizers.

Keywords

Microalgae Cyanobacteria Blue-green algae Soil fertility Nitrogen fixation 

References

  1. Abdel-Raouf N (2012) Agricultural importance of algae. Afr J Biotechnol 11:11648–11658.  https://doi.org/10.5897/AJB11.3983 CrossRefGoogle Scholar
  2. Abed RMM (2010) Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons. Int Biodeterior Biodegradation 64:58–64.  https://doi.org/10.1016/j.ibiod.2009.10.008 CrossRefGoogle Scholar
  3. Adam MS (1999) The promotive effect of the cyanobacterium Nostoc muscorum on the growth of some crop plants. Acta Microbiol Pol 48:163–171Google Scholar
  4. Adams DG, Bergman B, Nierzwicki-Bauer SA, Duggan PS, Rai AN, Schüßler A (2013) Cyanobacterial-plant symbioses. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, BerlinGoogle Scholar
  5. Allard B, Casadevall E (1990) Carbohydrate composition and characterization of sugars from the green microalga Botryococcus Braunii. Phytochemistry 29:1875–1878.  https://doi.org/10.1016/0031-9422(90)85031-A CrossRefGoogle Scholar
  6. Angelis S, Novak AC, Sydney EB, Soccol VT, Carvalho JC, Pandey A, Noseda MD, Tholozan JL, Lorquin J, Soccol CR (2012) Co-culture of microalgae, cyanobacteria, and macromycetes for exopolysaccharides production: process preliminary optimization and partial characterization. Appl Biochem Biotechnol 167:1092–1106.  https://doi.org/10.1007/s12010-012-9642-7 CrossRefPubMedGoogle Scholar
  7. Babu S, Bidyarani N, Chopra P, Monga D, Kumar R, Prasanna R, Kranthi S, Saxena AK (2015) Evaluating microbe-plant interactions and varietal differences for enhancing biocontrol efficacy in root rot disease challenged cotton crop. Eur J Plant Pathol 142:345–362.  https://doi.org/10.1007/s10658-015-0619-6 CrossRefGoogle Scholar
  8. Bailey D, Mazurak AP, Rosowski JR (1973) Aggegation of soil particles by algae. J Phycol 9:99–101.  https://doi.org/10.1111/j.0022-3646.1973.00099.x CrossRefGoogle Scholar
  9. Barclay WR, Lewin RA (1985) Microalgal polysaccharide production for the conditioning of agricultural soils. Plant Soil 88:159–169.  https://doi.org/10.1007/BF02182443 CrossRefGoogle Scholar
  10. Barros AI, Gonçalves AL, Simões M, Pires JCM (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500.  https://doi.org/10.1016/j.rser.2014.09.037 CrossRefGoogle Scholar
  11. Bender J, Lee RF, Phillips P (1995) Uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation. J Ind Microbiol 14:113–118.  https://doi.org/10.1007/BF01569892 CrossRefGoogle Scholar
  12. Benderliev K (1999) Algae and cyanobacteria release organic chelators in the presence of inorganic Fe(III) thus keeping iron dissolved. Bulgarian J Plant Physiol 25:65–75Google Scholar
  13. Bergman B, Matveyev A, Rasmussen U (1996) Chemical signalling in cyanobacterial-plant symbioses. Trends Plant Sci 1:191–197CrossRefGoogle Scholar
  14. Bergman B, Gallon JR, Rai AN, Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185.  https://doi.org/10.1016/S0168-6445(96)00028-9 CrossRefGoogle Scholar
  15. Bidyarani N, Prasanna R, Babu S, Hossain F, Saxena AK (2016) Enhancement of plant growth and yields in Chickpea (Cicer arietinum L.) through novel cyanobacterial and biofilmed inoculants. Microbiol Res 188:97–105.  https://doi.org/10.1016/j.micres.2016.04.005 CrossRefPubMedGoogle Scholar
  16. Bileva T (2013) Influence of green algae Chlorella vulgaris on Infested with Xiphinema index grape seedlings. J Earth Sci Clim Change 4:136.  https://doi.org/10.4172/2157-7617.1000136 CrossRefGoogle Scholar
  17. Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225.  https://doi.org/10.1016/j.biortech.2010.06.028 CrossRefPubMedGoogle Scholar
  18. Biondi N, Piccardi R, Margheri MC, Rodolfi L, Smith GD, Tredici MR (2004) Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl Environ Microbiol 70:3313–3320.  https://doi.org/10.1128/AEM.70.6.3313-3320.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bossa AY, Diekkrüger B, Giertz S, Steup G, Sintondji LO, Agbossou EK, Hiepe C (2012) Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa). Agric Water Manag 115:20–37.  https://doi.org/10.1016/j.agwat.2012.08.011 CrossRefGoogle Scholar
  20. Burns RG, Davies JA (1986) The microbiology of soil structure. Biol Agric Hortic 3:95–113.  https://doi.org/10.1080/01448765.1986.9754465 CrossRefGoogle Scholar
  21. Cameron HJ, Julian GR (1988) Utilization of hydroxyapatite by Cyanobacteria as their sole source of phosphate and calcium. Plant Soil 109:123–124.  https://doi.org/10.1007/BF02197589 CrossRefGoogle Scholar
  22. Chamizo S, Cantón Y, Lázaro R, Solé-Benet A, Domingo F (2012) Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems 15:148–161.  https://doi.org/10.1007/s10021-011-9499-6 CrossRefGoogle Scholar
  23. Chamizo S, Cantón Y, Domingo F, Belnap J (2013) Evaporative losses from soils covered by physical and different types of biological soil crusts. Hydrol Process 27:324–332.  https://doi.org/10.1002/hyp.8421 CrossRefGoogle Scholar
  24. Chamizo S, Mugnai G, Rossi F, Certini G, De Philippis R (2018) Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front Environ Sci 6:49.  https://doi.org/10.3389/fenvs.2018.00049 CrossRefGoogle Scholar
  25. Chen B, Li F, Liu N, Ge F, Xiao H, Yang Y (2015) Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium. Bioresour Technol 190:299–306.  https://doi.org/10.1016/j.biortech.2015.04.080 CrossRefPubMedGoogle Scholar
  26. Chi Z, Su CD, Lu WD (2007) A new exopolysaccharide produced by marine Cyanothece sp. 113. Bioresour Technol 98:1329–1332.  https://doi.org/10.1016/j.biortech.2006.05.001 CrossRefPubMedGoogle Scholar
  27. Chittapun S, Limbipichai S, Amnuaysin N, Boonkerd R, Charoensook M (2018) Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: A pot experiment. J Appl Phycol 30:79–85.  https://doi.org/10.1007/s10811-017-1138-y CrossRefGoogle Scholar
  28. Corbel S, Mougin C, Bouaïcha N (2014) Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 96:1–15CrossRefGoogle Scholar
  29. Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305.  https://doi.org/10.1016/j.gloenvcha.2008.10.009 CrossRefGoogle Scholar
  30. Cuddy WS, Summerell BA, Gehringer MM, Neilan BA (2013) Nostoc, Microcoleus and Leptolyngbya inoculums are detrimental to the growth of wheat (Triticum aestivum L.) under salt stress. Plant Soil 370:317–332.  https://doi.org/10.1007/s11104-013-1607-2 CrossRefGoogle Scholar
  31. Das SC, Mandal B, Mandal LN (1991) Effect of growth and subsequent decomposition of blue-green algae on the transformation of iron and manganese in submerged soils. Plant Soil 138:75–84.  https://doi.org/10.1007/BF00011810 CrossRefGoogle Scholar
  32. Das P, Thaher MI, Hakim MAQMA, Al-Jabri HMSJ, Alghasal GSHS (2016) A comparative study of the growth of Tetraselmis sp. in large scale fixed depth and decreasing depth raceway ponds. Bioresour Technol 216:114–120.  https://doi.org/10.1016/j.biortech.2016.05.058 CrossRefPubMedGoogle Scholar
  33. Das P, Quadir MA, Thaher M, Khan S, Chaudhary AK, Alghasal G, Al-Jabri HMSJ (2018a) Microalgal bioremediation of petroleum-derived low salinity and low pH produced water. J Appl Phycol 31:435.  https://doi.org/10.1007/s10811-018-1571-6 CrossRefGoogle Scholar
  34. Das P, Quadir MA, Chaudhary AK, Thaher MI, Khan S, Alghazal G, Al-Jabri H (2018b) Outdoor continuous cultivation of self-settling marine cyanobacterium Chroococcidiopsis sp. Ind Biotechnol 14:45–53.  https://doi.org/10.1089/ind.2017.0019 CrossRefGoogle Scholar
  35. Das P, Quadir MA, Thaher MI, Alghasal GSHS, Aljabri HMSJ (2018c) Microalgal nutrients recycling from the primary effluent of municipal wastewater and use of the produced biomass as bio-fertilizer. Int J Environ Sci Technol.  https://doi.org/10.1007/s13762-018-1867-8 CrossRefGoogle Scholar
  36. Day SJ, Norton JB, Strom CF, Kelleners TJ, Aboukila EF (2018) Gypsum, langbeinite, sulfur, and compost for reclamation of drastically disturbed calcareous saline–sodic soils. Int J Environ Sci Technol 16:295–304.  https://doi.org/10.1007/s13762-018-1671-5 CrossRefGoogle Scholar
  37. de Caire GZ, de Cano MS, de Mulé MC, Palma RM, Colombo K (1997) Exopolysaccharide of Nostoc muscorum (Cyanobacteria) in the aggregation of soil particles. J Appl Phycol 9:249–253.  https://doi.org/10.1023/A:1007994425799 CrossRefGoogle Scholar
  38. Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34:1159–1179.  https://doi.org/10.1016/j.biotechadv.2016.08.001 CrossRefPubMedGoogle Scholar
  39. Dewi IC, Falaise C, Hellio C, Bourgougnon N, Mouget J-L (2018) Chapter 12 – Anticancer, antiviral, antibacterial, and antifungal properties in microalgae. In: Levine IA, Fleurence J (eds) Microalgae in health and disease prevention. Academic Press, pp 235–261Google Scholar
  40. Di X, Takken FLW, Tintor N (2016) How phytohormones shape interactions between plants and the soil-borne fungus Fusarium oxysporum. Front Plant Sci 7:170.  https://doi.org/10.3389/fpls.2016.00170 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dias GA, Rocha RHC, Araújo JL, De Lima JF, Guedes WA (2016) Growth, yield, and postharvest quality in eggplant produced under different foliar fertilizer (Spirulina platensis) treatments. Semin Agrar 37(6):3893.  https://doi.org/10.5433/1679-0359.2016v37n6p3893 CrossRefGoogle Scholar
  42. Dmytryk A, Rój E, Wilk R, Chojnacka K, Górecki H (2014) Effect of new biostimulators on the initial phase of plant growth. Przem Chem 6:1020–1025Google Scholar
  43. Dong C, Xu N, Ding C, Gu H, Zhang W, Li X (2016) Suitable gibberellic acid treatment for double-purpose rice (Oryza sativa L.) varieties at different harvest times. Field Crop Res 193:178–185.  https://doi.org/10.1016/j.fcr.2016.04.038 CrossRefGoogle Scholar
  44. El Arroussi H, Elbaouchi A, Benhima R, Bendaou N, Smouni A, Wahby I (2016) Halophilic microalgae Dunaliella salina extracts improve seed germination and seedling growth of Triticum aestivum L. under salt stress. In: Acta horticulturae. International Society for Horticultural Science (ISHS), Leuven, pp 13–26Google Scholar
  45. El-Sharony TF, El-Gioushy SF, Amin OA (2015) Effect of foliar application with algae and plant extracts on growth, yield and fruit quality of fruitful mango trees Cv. Fagri Kalan. J Hortic 2:1000162.  https://doi.org/10.4172/2376-0354.1000162 CrossRefGoogle Scholar
  46. El-Zemrany HM (2017) Association of N2-fixing cyanobacteria with wheat (Triticum vulgare L.) roots. Afr J Microbiol Res 11:626–630.  https://doi.org/10.5897/AJMR2016.8372 CrossRefGoogle Scholar
  47. Faheed FA, Fattah ZA (2008) Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J Agric Soc Sci (Pakistan) 4:165–169Google Scholar
  48. Falchini L, Sparvoli E, Tomaselli L (1996) Effect of Nostoc (Cyanobacteria) inoculation on the structure and stability of clay soils. Biol Fertil Soils 23:346–352.  https://doi.org/10.1007/BF00335965 CrossRefGoogle Scholar
  49. Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373.  https://doi.org/10.1016/S0168-6445(98)00012-6 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Fewer D, Friedl T, Büdel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23:82–90.  https://doi.org/10.1006/mpev.2001.1075 CrossRefPubMedGoogle Scholar
  51. Fingerhut U, Webb LE, Soeder CJ (1984) Increased yields of Rhizobium japonicum by an extract of the green alga, Scenedesmus obliquus (276-3a). Appl Microbiol Biotechnol 19:358–360.  https://doi.org/10.1007/BF00253785 CrossRefGoogle Scholar
  52. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478(7369):337CrossRefGoogle Scholar
  53. Food and Agriculture Organization (1996) World food summit: rome declaration on world food security and world food summit plan of action. World Food Summit.  https://doi.org/10.2307/2137827
  54. Garcia-Gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061.  https://doi.org/10.1007/s10811-015-0625-2 CrossRefPubMedGoogle Scholar
  55. García-Salamanca A, Molina-Henares MA, van Dillewijn P, Solano J, Pizarro-Tobías P, Roca A, Duque E, Ramos JL (2013) Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microb Biotechnol 6:36–44.  https://doi.org/10.1111/j.1751-7915.2012.00358.x CrossRefPubMedGoogle Scholar
  56. Gheda SF, Ahmed DA (2015) Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc kihlmani and Anabaena cylindrica. Rend Lincei 26:121–131.  https://doi.org/10.1007/s12210-014-0351-8 CrossRefGoogle Scholar
  57. Gol’din E (2012) Biologically active microalgae and cyanobacteria in nature and marine biotechnology. Turkish J Fish Aquat Sci 12:423–427Google Scholar
  58. Grant CA, Wu R, Selles F, Harker KN, Clayton GW, Bittman S, Zebarth BJ, Lupwayi NZ (2012) Crop yield and nitrogen concentration with controlled release urea and split applications of nitrogen as compared to non-coated urea applied at seeding. Field Crop Res 127:170–180.  https://doi.org/10.1016/j.fcr.2011.11.002 CrossRefGoogle Scholar
  59. Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063CrossRefGoogle Scholar
  60. Gupta Choudhury S, Srivastava S, Singh R, Chaudhari SK, Sharma DK, Singh SK, Sarkar D (2014) Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice-wheat cropping system under reclaimed sodic soil. Soil Tillage Res 136:76–83.  https://doi.org/10.1016/j.still.2013.10.001 CrossRefGoogle Scholar
  61. Guzman-Murillo MA, Ascencio F, Larrinaga-Mayoral JA (2013) Germination and ROS detoxification in bell pepper (Capsicum annuum L.) under NaCl stress and treatment with microalgae extracts. Protoplasma 250:33–42.  https://doi.org/10.1007/s00709-011-0369-z CrossRefPubMedGoogle Scholar
  62. Haas JC, Street NR, Sjödin A, Lee NM, Högberg MN, Näsholm T, Hurry V (2018) Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest. Soil Biol Biochem 125:197–209.  https://doi.org/10.1016/j.soilbio.2018.07.005 CrossRefGoogle Scholar
  63. Hamouda RA, El-Ansary MSM (2017) Potential of plant-parasitic nematode control in banana plants by microalgae as a new approach towards resistance. Egypt J Biol Pest Control 27:165–172Google Scholar
  64. Han W, Clarke W, Pratt S (2014) Composting of waste algae: a review. Waste Manag 34:1148–1155CrossRefGoogle Scholar
  65. Han X, Zeng H, Bartocci P, Fantozzi F, Yan Y (2018) Phytohormones and effects on growth and metabolites of microalgae: a review. Fermentation 4:25.  https://doi.org/10.3390/fermentation4020025 CrossRefGoogle Scholar
  66. Hanagata N, Uehara H, Ito A, Takeuchi T, Karube I (1994) Elicitor for red pigment formation in Carthamus tinctorius cultured cells. J Biotechnol 34:71–77.  https://doi.org/10.1016/0168-1656(94)90167-8 CrossRefGoogle Scholar
  67. Hillier J, Hawes C, Squire G, Hilton A, Wale S, Smith P (2009) The carbon footprints of food crop production. Int J Agric Sustain 7:107–118.  https://doi.org/10.3763/ijas.2009.0419 CrossRefGoogle Scholar
  68. Hussain A, Hasnain S (2011) Phytostimulation and biofertilization in wheat by cyanobacteria. J Ind Microbiol Biotechnol 38:85–92.  https://doi.org/10.1007/s10295-010-0833-3 CrossRefPubMedGoogle Scholar
  69. Hussain S, Siddique T, Saleem M, Arshad M, Khalid A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102:159–200CrossRefGoogle Scholar
  70. Ibraheem IBM (2007) Cyanobacteria as alternative biological conditioners for bioremediation of barren soil. Egypt J Phycol 8:100Google Scholar
  71. Ibrahim W, Karam M, M El-Shahat R, Adway AA (2014) Biodegradation and utilization of organophosphorus pesticide malathion by Cyanobacteria. Biomed Res Int 2014:392682PubMedPubMedCentralGoogle Scholar
  72. IPTS/EC (2007) Integrated pollution prevention and control reference document on best available techniques for the manufacture of large volume inorganic chemicals – solids and others industry. Brussels, BelgiumGoogle Scholar
  73. Issa AA, Abd-Alla HM, Ohyama T (2014) Nitrogen fixing cyanobacteria: future prospect. In: Advances in biology and ecology of nitrogen fixation. InTech.  https://doi.org/10.5772/56995 Google Scholar
  74. Jha MN, Prasad AN (2005) Useful carriers for Cyanobacteria: their response to cyanobacterial growth, acetylene-reductase activity, cyanobacterial grazers and paddy yield in calcareous soil. World J Microbiol Biotechnol 21:1521–1527.  https://doi.org/10.1007/s11274-005-7388-x CrossRefGoogle Scholar
  75. Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128:359–364.  https://doi.org/10.1016/j.biortech.2012.10.119 CrossRefPubMedGoogle Scholar
  76. Jimenez JI, Vansach T, Yoshida WY, Sakamoto B, Porzgen P, Horgen FD (2009) Halogenated fatty acid amides and cyclic depsipeptides from an eastern Caribbean collection of the cyanobacterium Lyngbya majuscula. J Nat Prod 72:1573–1578.  https://doi.org/10.1021/np900173d CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kanchan A, Simranjit K, Ranjan K, Prasanna R, Ramakrishnan B, Singh MC, Hasan M, Shivay YS (2018) Microbial biofilm inoculants benefit growth and yield of chrysanthemum varieties under protected cultivation through enhanced nutrient availability. Plant Biosyst 153:306–316.  https://doi.org/10.1080/11263504.2018.1478904 CrossRefGoogle Scholar
  78. Katırcıoğlu H, Akin BS, Tahir A (2004) Microalgal toxin(s): characteristics and importance. Afr J Biotechnol 3:667–674Google Scholar
  79. Kaur R, Goyal D (2018) Heavy metal accumulation from coal fly ash by cyanobacterial biofertilizers. Part Sci Technol 36:513–516.  https://doi.org/10.1080/02726351.2017.1398794 CrossRefGoogle Scholar
  80. Kaushik BD, Krishna Murti GSR (1981) Effect of blue green algae and gypsum application on physicochemical properties of alkali soils. Phykos 20:91–94Google Scholar
  81. Kim J-D (2006) Screening of Cyanobacteria (Blue-Green algae) from rice paddy soil for antifungal activity against plant pathogenic fungi. Mycobiology 34:138–142.  https://doi.org/10.4489/MYCO.2006.34.3.138 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kulik MM (1995) The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur J Plant Pathol 101:585–599CrossRefGoogle Scholar
  83. Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2(4):a000315.  https://doi.org/10.1101/cshperspect.a000315 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kuritz T (1998) Cyanobacteria as agents for the control of pollution by pesticides and chlorinated organic compounds. J Appl Microbiol 85:186S–192S.  https://doi.org/10.1111/j.1365-2672.1998.tb05298.x CrossRefPubMedGoogle Scholar
  85. Kushwaha AS, Gupta AB (1970) Effect of pretreating the seeds with extracts of Phormidium foveolarum on growth and development of maize seedlings. Hydrobiologia 35:203–208.  https://doi.org/10.1007/BF00181727 CrossRefGoogle Scholar
  86. Ladha JK, Tirol-Padre A, Reddy CK, Cassman KG, Verma S, Powlson DS, Van Kessel C, De Richter DB, Chakraborty D, Pathak H (2016) Global nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systems. Sci Rep 6:19355.  https://doi.org/10.1038/srep19355 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Lange W (1976) Speculations on a possible essential function of the gelatinous sheath of blue-green algae. Can J Microbiol 22:1181–1185CrossRefGoogle Scholar
  88. Latha S, Assistant A, John S (2013) Development of bio-fertilizers and its future perspective. Sch Acad J Pharm 2:327–332Google Scholar
  89. Lee C-G, Alvarez PJJ, Kim H-G, Jeong S, Lee S, Lee KB, Lee S-H, Choi J-W (2018) Phosphorous recovery from sewage sludge using calcium silicate hydrates. Chemosphere 193:1087–1093.  https://doi.org/10.1016/j.chemosphere.2017.11.129 CrossRefPubMedGoogle Scholar
  90. Lehmann A, Leifheit EF, Rillig MC (2017) Mycorrhizas and soil aggregation. In: Johnson CS, Gahring C, Jansa J (eds) Mycorrhizal mediation of soil: fertility, structure, and carbon storage. Elsevier, pp 241–262Google Scholar
  91. Li Y, Xu SS, Gao J, Pan S, Wang GX (2014) Chlorella triggers stomatal closure mediated by NADPH oxidase and improves instantaneous water use efficiency in Vicia faba. Plant Signal Behav 9:e93290.  https://doi.org/10.4161/psb.29078 CrossRefGoogle Scholar
  92. Li SW, Zeng XY, Leng Y, Feng L, Kang XH (2018) Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses. Ecotoxicol Environ Saf 161:332–341.  https://doi.org/10.1016/j.ecoenv.2018.06.003 CrossRefPubMedGoogle Scholar
  93. Long XE, Yao H, Huang Y, Wei W, Zhu YG (2018) Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. Soil Biol Biochem 118:103–114.  https://doi.org/10.1016/j.soilbio.2017.12.014 CrossRefGoogle Scholar
  94. Lu Y, Xu J (2015) Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci 20:273–282CrossRefGoogle Scholar
  95. Lumpkin TA, Plucknett DL (1982) Azolla as a green manure: use and management in crop production. Westview Press, BoulderGoogle Scholar
  96. Ma J, Bei Q, Wang X, Lan P, Liu G, Lin X, Liu Q, Lin Z, Liu B, Zhang Y, Jin H, Hu T, Zhu J, Xie Z (2019) Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system. Sci Total Environ 649:686–694.  https://doi.org/10.1016/j.scitotenv.2018.08.318 CrossRefPubMedGoogle Scholar
  97. Malam Issa O, Défarge C, Le Bissonnais Y, Marin B, Duval O, Bruand A, D’Acqui LP, Nordenberg S, Annerman M (2007) Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil 290:209–219.  https://doi.org/10.1007/s11104-006-9153-9 CrossRefGoogle Scholar
  98. Manjunath M, Prasanna R, Nain L, Dureja P, Singh R, Kumar A, Jaggi S, Kaushik BD (2010) Biocontrol potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Arch Phytopathol Plant Prot 43:666–677.  https://doi.org/10.1080/03235400802075815 CrossRefGoogle Scholar
  99. Manjunath M, Prasanna R, Sharma P, Nain L, Singh R (2011) Developing PGPR consortia using novel genera Providencia and Alcaligenes along with cyanobacteria for wheat. Arch Agron Soil Sci 57:873–887.  https://doi.org/10.1080/03650340.2010.499902 CrossRefGoogle Scholar
  100. Manjunath M, Kanchan A, Ranjan K, Venkatachalam S, Prasanna R, Ramakrishnan B, Hossain F, Nain L, Shivay YS, Rai AB, Singh B (2016) Beneficial cyanobacteria and eubacteria synergistically enhance bioavailability of soil nutrients and yield of okra. Heliyon 2:e00066.  https://doi.org/10.1016/j.heliyon.2016.e00066 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Maqubela MP, Mnkeni PNS, Issa OM, Pardo MT, D’Acqui LP (2009) Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil 315:79–92.  https://doi.org/10.1007/s11104-008-9734-x CrossRefGoogle Scholar
  102. Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 65:186–202.  https://doi.org/10.1016/j.watres.2014.07.025 CrossRefPubMedGoogle Scholar
  103. Maršálek B, Zahradníčková H, Hronková M (1992) Extracellular abscisic acid produced by cyanobacteria under salt stress. J Plant Physiol 139:506–508.  https://doi.org/10.1016/S0176-1617(11)80503-1 CrossRefGoogle Scholar
  104. Maurya R, Chokshi K, Ghosh T, Trivedi K, Pancha I, Kubavat D, Mishra S, Ghosh A (2016) Lipid extracted microalgal biomass residue as a fertilizer substitute for Zea mays L. Front Plant Sci 6:1266.  https://doi.org/10.3389/fpls.2015.01266 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Medeiros DL, Sales EA, Kiperstok A (2015) Energy production from microalgae biomass: carbon footprint and energy balance. J Clean Prod 96:493–500.  https://doi.org/10.1016/j.jclepro.2014.07.038 CrossRefGoogle Scholar
  106. Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152.  https://doi.org/10.1080/07388550500248571 CrossRefPubMedGoogle Scholar
  107. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663CrossRefGoogle Scholar
  108. Michalak I, Chojnacka K, Dmytryk A, Wilk R, Gramza M, Roj E (2016) Evaluation of supercritical extracts of algae as biostimulants of plant growth in field trials. Front Plant Sci 7:1591.  https://doi.org/10.3389/fpls.2016.01591 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Michaud AM, Chappellaz C, Hinsinger P (2008) Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant Soil 310:151–165.  https://doi.org/10.1007/s11104-008-9642-0 CrossRefGoogle Scholar
  110. Mikha MM, Rice CW (2004) Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci Soc Am J 68:809–816.  https://doi.org/10.2136/sssaj2004.0809 CrossRefGoogle Scholar
  111. Mugnai G, Rossi F, Felde VJMNL, Colesie C, Büdel B, Peth S, Kaplan A, De Philippis R (2018) Development of the polysaccharidic matrix in biocrusts induced by a cyanobacterium inoculated in sand microcosms. Biol Fertil Soils 54:27–40.  https://doi.org/10.1007/s00374-017-1234-9 CrossRefGoogle Scholar
  112. Nagy P, Pintér T (2014) Effects of foliar biofertilizer sprays on nutrient uptake, yield, and quality parameters of Blaufrankish (Vitis vinifera L.) grapes. Commun Soil Sci Plant Anal 46:219–227CrossRefGoogle Scholar
  113. Nassar MM, Hafez ST, Nagaty IM, Khalaf SA (1999) The insecticidal activity of Cyanobacteria against four insects, two of medical importance and two agricultural pests with reference to the action on albino mice. J Egypt Soc Parasitol 29:939–949PubMedGoogle Scholar
  114. Natarajan C, Prasanna R, Gupta V, Dureja P, Nain L (2012) Characterization of the fungicidal activity of Calothrix elenkinii using chemical methods and microscopy. Appl Biochem Microbiol 48:51–57.  https://doi.org/10.1134/S0003683812010115 CrossRefGoogle Scholar
  115. Oancea F, Velea S, Fătu V, Mincea C, Ilie L (2013) Micro-algae based plant biostimulant and its effect on water stressed tomato plants. Rom J Plant Prot 6:104–117.  https://doi.org/10.1016/j.algal.2015.07.006 CrossRefGoogle Scholar
  116. Odgerel B, Tserendulam D (2017) Effect of Chlorella as a biofertilizer on germination of wheat and barley grains. Proc Mong Acad Sci 56:26.  https://doi.org/10.5564/pmas.v56i4.839 CrossRefGoogle Scholar
  117. Osman MEH, El-Sheekh MM, El-Naggar AH, Gheda SF (2010) Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils 46:861–875.  https://doi.org/10.1007/s00374-010-0491-7 CrossRefGoogle Scholar
  118. Oster JD (1982) Gypsum usage in irrigated agriculture: a review. Fertil Res 3:73–89.  https://doi.org/10.1007/BF01063410 CrossRefGoogle Scholar
  119. Padmaperuma G, Kapoore RV, Gilmour DJ, Vaidyanathan S (2018) Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit Rev Biotechnol 38:690–703CrossRefGoogle Scholar
  120. Pan M, Chu LM (2017) Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environ Pollut 231:829–836.  https://doi.org/10.1016/j.envpol.2017.08.051 CrossRefPubMedGoogle Scholar
  121. Pandhair V, Gosal SS (2009) Capsaicin production in cell suspension cultures derived from placenta of capsicum annuum l. Fruit. Indian J Agric Biochem 22:78–82Google Scholar
  122. Paracer S (1987) Effective use of marine algal products in the management of plant-parasitic nematodes. J Nematol 19:194PubMedPubMedCentralGoogle Scholar
  123. Park C-H, Li XR, Zhao Y, Jia RL, Hur J-S (2017) Rapid development of cyanobacterial crust in the field for combating desertification. PLoS One 12:e0179903.  https://doi.org/10.1371/journal.pone.0179903 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941.  https://doi.org/10.1111/j.1574-6976.2009.00183.x CrossRefPubMedGoogle Scholar
  125. Prasanna R, Pattnaik S, Sugitha TCK, Nain L, Saxena AK (2011) Development of cyanobacterium-based biofilms and their in vitro evaluation for agriculturally useful traits. Folia Microbiol (Praha) 56:49–58.  https://doi.org/10.1007/s12223-011-0013-5 CrossRefGoogle Scholar
  126. Prasanna R, Chaudhary V, Gupta V, Babu S, Kumar A, Singh R, Shivay YS, Nain L (2013) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 136:337–353.  https://doi.org/10.1007/s10658-013-0167-x CrossRefGoogle Scholar
  127. Prasanna R, Ramakrishnan B, Simranjit K, Ranjan K, Kanchan A, Hossain F, Nain L (2017) Cyanobacterial and rhizobial inoculation modulates the plant physiological attributes and nodule microbial communities of chickpea. Arch Microbiol 199:1311–1323.  https://doi.org/10.1007/s00203-017-1405-y CrossRefPubMedGoogle Scholar
  128. Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S, Thapa S, Renuka N (2015) Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res 171:78–89.  https://doi.org/10.1016/j.micres.2014.12.011 CrossRefPubMedGoogle Scholar
  129. ProEcoWine (2018). https://www.proecowine.eu/index.html. Accessed 26 Nov 2018
  130. Rai A (2015) Salt tolerance by cyanobacteria and reclamation of usar soil. Indian J Plant Sci 4:59–62Google Scholar
  131. Rai U, Tripathi D, Singh N, Kumar A, Ali M, Pal A, Singh S (2000) Amelioration of Fly-Ash by selected nitrogen fixing blue green algae. Bull Environ Contam Toxicol 64:294–301CrossRefGoogle Scholar
  132. Rana A, Kabi SR, Verma S, Adak A, Pal M, Shivay YS, Prasanna R, Nain L (2015) Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro- and micronutrients in grains in rice–wheat cropping sequence. Cogent Food Agric 1:1037379.  https://doi.org/10.1080/23311932.2015.1037379 CrossRefGoogle Scholar
  133. Rao DLN, Burns RG (1990) The effect of surface growth of blue-green algae and bryophytes on some microbiological, biochemical, and physical soil properties. Biol Fertil Soils 9:239–244.  https://doi.org/10.1007/BF00336233 CrossRefGoogle Scholar
  134. Rao SR, Tripathi U, Suresh B, Ravishankar GA (2001) Enhamcement of secondary metabolite production in hairy root cultures of Beta vulgaris and Tagetes patula under the influence of microalgal elicitors. Food Biotechnol 15:35–46.  https://doi.org/10.1081/FBT-100103893 CrossRefGoogle Scholar
  135. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 57:475–492CrossRefGoogle Scholar
  136. Renuka N, Prasanna R, Sood A, Bansal R, Bidyarani N, Singh R, Shivay YS, Nain L, Ahluwalia AS (2017) Wastewater grown microalgal biomass as inoculants for improving micronutrient availability in wheat. Rhizosphere 3:150–159.  https://doi.org/10.1016/j.rhisph.2017.04.005 CrossRefGoogle Scholar
  137. Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N (2018) Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sust Energ Rev 92:394–404CrossRefGoogle Scholar
  138. Romanenko K, Kosakovskaya IV, Romanenko PA (2015) Phytohormones of microalgae: biological role and involvement in the regulation of physiological processes. Pt I. Auxins, abscisic acid, ethylene. Int J Algae 17:275–289CrossRefGoogle Scholar
  139. Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A (2019) Microalgal biostimulants and biofertilisers in crop productions. Agronomy 9(4):192CrossRefGoogle Scholar
  140. Rossi F, Li H, Liu Y, De Philippis R (2017) Cyanobacterial inoculation (cyanobacterisation): perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth Sci Rev 171:28–43.  https://doi.org/10.1016/j.earscirev.2017.05.006 CrossRefGoogle Scholar
  141. Roychoudhury P, Pillai GR, Pandey SL, Murti GSRK, Venkataraman GS (1983) Effect of blue-green algae on aggregate stability and rice yield under different irrigation and nitrogen levels. Soil Tillage Res 3:61–65.  https://doi.org/10.1016/0167-1987(83)90017-X CrossRefGoogle Scholar
  142. Rudell DR, Mattheis JP, Fan X, Fellman JK (2002) Methyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in “Fuji” apples. J Am Soc Hortic Sci 127:435–441.  https://doi.org/10.1104/pp.010843 CrossRefGoogle Scholar
  143. Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55:207–212CrossRefGoogle Scholar
  144. Sadeghi SH, Kheirfam H, Homaee M, Darki BZ, Vafakhah M (2017) Improving runoff behavior resulting from direct inoculation of soil micro-organisms. Soil Tillage Res 171:35–41.  https://doi.org/10.1016/j.still.2017.04.007 CrossRefGoogle Scholar
  145. Sahu D, Priyadarshani I, Rath B (2012) Cyanobacteria – as potential biofertilizer. CIB Tech J Microbiol 1:20–26Google Scholar
  146. Saikia P, Bordoloi R (1994) Blue-green algae of the rice fields of Barpeta, Nalbari and Kamrup district of Assam. Phykos 33:53–58Google Scholar
  147. Santísima-Trinidad ABL, del Mar Montiel-Rozas M, Diéz-Rojo MÁ, Pascual JA, Ros M (2018) Impact of foliar fungicides on target and non-target soil microbial communities in cucumber crops. Ecotoxicol Environ Saf 166:78–85.  https://doi.org/10.1016/j.ecoenv.2018.09.074 CrossRefPubMedGoogle Scholar
  148. Sathiyamoorthy P, Shanmugasundaram S (1996) Preparation of cyanobacterial peptide toxin as a biopesticide against cotton pests. Appl Microbiol Biotechnol 46:511–513.  https://doi.org/10.1007/s002530050852 CrossRefGoogle Scholar
  149. Schrader KK, Nagle DG, Wedge DE (2002) Algal and cyanobacterial metabolites as agents for pest management. In: Upadhyay RK (ed) Advances in microbial toxin research and its biotechnological exploitation. Springer, Boston, MA, pp 171–195CrossRefGoogle Scholar
  150. Seenivasan R, Prasath V, Mohanraj R (2016) Sodic soil reclamation in a semi-arid region involving organic amendments and vegetative remediation by Casuarina equsetifolia and Erianthus arundinaceus. Environ Process 3:431–449.  https://doi.org/10.1007/s40710-016-0155-1 CrossRefGoogle Scholar
  151. Shields LM, Durrell LW (1964) Algae in relation to soil fertility. Bot Rev 30:92–128.  https://doi.org/10.1007/BF02858614 CrossRefGoogle Scholar
  152. Shukla AC (1967) Effect of algal hormones on stomatal and epidermal development in rice leaves. Hydrobiologia 30:221–224.  https://doi.org/10.1007/BF00034594 CrossRefGoogle Scholar
  153. Shukla AC, Gupta AB (1967) Influence of algal growth-promoting substances on growth, yield and protein contents of rice plants. Nature 213:744CrossRefGoogle Scholar
  154. Singh S (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117:1221–1244CrossRefGoogle Scholar
  155. Singh DP, Kumar A, Tyagi M (2003) Biotoxic cyanobacterial metabolites exhibiting pesticidal and mosquito larvicidal activities. J Microbiol Biotechnol 13:50–56Google Scholar
  156. Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353CrossRefGoogle Scholar
  157. Singh AK, Singh PP, Tripathi V, Verma H, Singh SK, Srivastava AK, Kumar A (2018) Distribution of cyanobacteria and their interactions with pesticides in paddy field: a comprehensive review. J Environ Manag 224:361–375.  https://doi.org/10.1016/j.jenvman.2018.07.039 CrossRefGoogle Scholar
  158. Solé-Bundó M, Cucina M, Folch M, Tàpias J, Gigliotti G, Garfí M, Ferrer I (2017) Assessing the agricultural reuse of the digestate from microalgae anaerobic digestion and co-digestion with sewage sludge. Sci Total Environ 586:1–9.  https://doi.org/10.1016/j.scitotenv.2017.02.006 CrossRefPubMedGoogle Scholar
  159. Sommerfeld M (2014) Evaluation of Potential Agricultural Applications of the Microalga Scenedesmus dimorphus. Doctoral dissertation, Arizona State UniversityGoogle Scholar
  160. Srivastava S, Srivastava S, Bist V, Awasthi S, Chauhan R, Chaudhry V, Singh PC, Dwivedi S, Niranjan A, Agrawal L, Chauhan PS, Tripathi RD, Nautiyal CS (2018) Chlorella vulgaris and Pseudomonas putida interaction modulates phosphate trafficking for reduced arsenic uptake in rice (Oryza sativa L.). J Hazard Mater 351:177–187.  https://doi.org/10.1016/j.jhazmat.2018.02.039 CrossRefPubMedGoogle Scholar
  161. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29:896–907.  https://doi.org/10.1016/j.biotechadv.2011.07.009 CrossRefPubMedGoogle Scholar
  162. Subramanian G, Sekar S, Sampoornam S (1994) Biodegradation and utilization of organophosphorus pesticides by cyanobacteria. Int Biodeterior Biodegradation 33:129–143.  https://doi.org/10.1016/0964-8305(94)90032-9 CrossRefGoogle Scholar
  163. Suresh Kumar K, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae – a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352CrossRefGoogle Scholar
  164. Swarnalakshmi K, Prasanna R, Kumar A, Pattnaik S, Chakravarty K, Shivay YS, Singh R, Saxena AK (2013) Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur J Soil Biol 55:107–116.  https://doi.org/10.1016/j.ejsobi.2012.12.008 CrossRefGoogle Scholar
  165. Thomas AD, Dougill AJ (2007) Spatial and temporal distribution of cyanobacterial soil crusts in the Kalahari: implications for soil surface properties. Geomorphology 85:17–29.  https://doi.org/10.1016/j.geomorph.2006.03.029 CrossRefGoogle Scholar
  166. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677.  https://doi.org/10.1038/nature01014 CrossRefPubMedGoogle Scholar
  167. Trejo A, de-Bashan LE, Hartmann A, Hernandez J-P, Rothballer M, Schmid M, Bashan Y (2012) Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environ Exp Bot 75:65–73.  https://doi.org/10.1016/j.envexpbot.2011.08.007 CrossRefGoogle Scholar
  168. Tripathi RD, Dwivedi S, Shukla MK, Mishra S, Srivastava S, Singh R, Rai U, Gupta D (2008) Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere 70:1919–1929CrossRefGoogle Scholar
  169. Upendar G, Singh S, Chakrabarty J, Ghanta KC, Dutta S, Dutta A (2018) Sequestration of carbon dioxide and production of biomolecules using cyanobacteria. J Environ Manag 218:234–244.  https://doi.org/10.1016/j.jenvman.2018.04.031 CrossRefGoogle Scholar
  170. Uysal O, Uysal FO, Ekinci K (2015) Evaluation of microalgae as microbial fertilizer. Eur J Sustain Dev 4:77–82.  https://doi.org/10.14207/ejsd.2015.v4n2p77 CrossRefGoogle Scholar
  171. Uzoh IM, Babalola OO (2018) Rhizosphere biodiversity as a premise for application in bio-economy. Agric Ecosyst Environ 265:524–534CrossRefGoogle Scholar
  172. Valera-Medina A, Xiao H, Owen-Jones M, David WIF, Bowen PJ (2018) Ammonia for power. Prog Energy Combust Sci 69:63–102.  https://doi.org/10.1016/j.pecs.2018.07.001 CrossRefGoogle Scholar
  173. Verma R, Srivastava A (2018) Carbon dioxide sequestration and its enhanced utilization by photoautotroph microalgae. Environ Dev 27:95–106.  https://doi.org/10.1016/j.envdev.2018.07.004 CrossRefGoogle Scholar
  174. Victor TJ, Reuben R (2000) Effects of organic and inorganic fertilisers on mosquito populations in rice fields of southern India. Med Vet Entomol 14:361–368CrossRefGoogle Scholar
  175. Wake H, Umetsu H, Ozeki Y, Shimomura K, Matsunaga T (1991) Extracts of marine cyanobacteria stimulated somatic embryogenesis of Daucus carota L. Plant Cell Rep 9:655–658.  https://doi.org/10.1007/BF00235350 CrossRefPubMedGoogle Scholar
  176. Wang Z-b, Chen J, Mao S-c, Han Y-c, Chen F, Zhang L-f, Li Y-b, Li C-d (2017) Comparison of greenhouse gas emissions of chemical fertilizer types in China’s crop production. J Clean Prod 41:1267–1274.  https://doi.org/10.1016/j.jclepro.2016.09.120 CrossRefGoogle Scholar
  177. Wang B, Xin M, Wei Q, Xie L (2018) A historical overview of coastal eutrophication in the China Seas. Mar Pollut Bull 136:394–400.  https://doi.org/10.1016/j.marpolbul.2018.09.044 CrossRefPubMedGoogle Scholar
  178. Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Rusch J, Holzenburg A, Devarenne TP, Goodenough U (2012) Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell 11:1424–1440.  https://doi.org/10.1128/EC.00184-12 CrossRefPubMedPubMedCentralGoogle Scholar
  179. Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812.  https://doi.org/10.1016/0734-9750(93)90003-6 CrossRefPubMedGoogle Scholar
  180. Wilhelm SW, Trick CG (1994) Iron-limited growth of cyanobacteria: multiple siderophore production is a common response. Limnol Oceanogr 39:1979–1984.  https://doi.org/10.4319/lo.1994.39.8.1979 CrossRefGoogle Scholar
  181. Win TT, Barone GD, Secundo F, Fu P (2018) Algal biofertilizers and plant growth stimulants for sustainable agriculture. Ind Biotechnol 14:203–211.  https://doi.org/10.1089/ind.2018.0010 CrossRefGoogle Scholar
  182. Wuang SC, Khin MC, Chua PQD, Luo YD (2016) Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res 15:59–64.  https://doi.org/10.1016/j.algal.2016.02.009 CrossRefGoogle Scholar
  183. Xiao R, Zheng Y (2016) Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv 34:1225–1244CrossRefGoogle Scholar
  184. Xu Y, Rossi F, Colica G, Deng S, De Philippis R, Chen L (2013) Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approach for the restoration of desertified areas. Biol Fertil Soils 49:143–152.  https://doi.org/10.1007/s00374-012-0707-0 CrossRefGoogle Scholar
  185. Xue C, Wang L, Wu T, Zhang S, Tang T, Wang L, Zhao Q, Sun Y (2017) Characterization of Co-cultivation of cyanobacteria on growth, productions of polysaccharides and extracellular proteins, nitrogenase activity, and photosynthetic activity. Appl Biochem Biotechnol 181:340–349.  https://doi.org/10.1007/s12010-016-2215-4 CrossRefPubMedGoogle Scholar
  186. Yandigeri MS, Kashyap S, Yadav AK, Srinavasan R, Pabbi S (2011) Studies on mineral phosphate solubilization by cyanobacteria Westiellopsis and Anabaena. Mikrobiologiia 80:552–559PubMedGoogle Scholar
  187. Yang Y, Wang N, Guo X, Zhang Y, Ye B (2017) Comparative analysis of bacterial community structure in the rhizosphere of maize by highthroughput pyrosequencing. PLoS One 12:e0178425.  https://doi.org/10.1371/journal.pone.0178425 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Yilmaz E, Sönmez M (2017) The role of organic/bio-fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales. Soil Tillage Res 168:118–124.  https://doi.org/10.1016/j.still.2017.01.003 CrossRefGoogle Scholar
  189. Young P, Buchanan N, Fallowfield HJ (2016) Inactivation of indicator organisms in wastewater treated by a high rate algal pond system. J Appl Microbiol 121:577–586.  https://doi.org/10.1111/jam.13180 CrossRefPubMedGoogle Scholar
  190. Yu Y, Zhou Y, Wang Z, Torres OL, Guo R, Chen J (2017) Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment. Sci Rep 7:4168.  https://doi.org/10.1038/s41598-017-04128-3 CrossRefPubMedPubMedCentralGoogle Scholar
  191. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333CrossRefGoogle Scholar
  192. Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea of China. Evid Based Complement Alternat Med 2011:615032.  https://doi.org/10.1155/2011/615032 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Probir Das
    • 1
    Email author
  • Shoyeb Khan
    • 1
  • Afeefa Kiran Chaudhary
    • 1
  • Mohammad AbdulQuadir
    • 1
  • Mehmoud Ibrahim Thaher
    • 1
  • Hareb Al-Jabri
    • 1
  1. 1.Algal Technologies Program, Center for Sustainable DevelopmentCollege of Arts and Sciences, Qatar UniversityDohaQatar

Personalised recommendations