Arbuscular Mycorrhizal Fungi (AMF) from Heavy Metal-Contaminated Soils: Molecular Approach and Application in Phytoremediation

  • Sanjeev KumarEmail author
  • Saurabh Saxena
Part of the Soil Biology book series (SOILBIOL, volume 55)


Discharge of effluents from textile industry into river and agricultural land is one of the major global problems. The discharge of dye-containing effluents directly into the water makes it toxic for environment and living organisms. Currently available physical and chemical processes do not remove toxic chemicals, dyes, and detergents completely from the environment. It is now known that biological organisms like Arbuscular mycorrhizal fungi (AMF), in association with different plant species grown under contaminated soils, enhance uptake of heavy metals. However, very limited knowledge is available with community composition of tolerant mycorrhizal species/strains associated with heavy metal accumulator plants. Therefore, the present chapter deals with identification of novel approaches for diagnosis of mycorrhizal species from complex environmental soil. Furthermore, this chapter suggests more sustainable approaches for reclamation of heavy metals by AMF associated with the heavy metal accumulator plants.


Contaminated soils Environmental soil Heavy metal Arbuscular mycorrhizal fungi 


  1. Al Agely A, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). J Environ Qual 34(6):2181–2186PubMedCrossRefGoogle Scholar
  2. Arias J, PeraltaVidea J, Ellzey J, Ren M, Viveros M, Gardea Torresdey J (2010) Effects of Glomus deserticola inoculation on Prosopis: enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environ Exp Bot 68:139–148CrossRefGoogle Scholar
  3. Bago B, Azcon-Aguilar C, Piche Y (1998) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90:52–62CrossRefGoogle Scholar
  4. Bagyaraj DJ (1995) Influence of agricultural practices on vesicular arbuscular mycorrhizal fungi in soil. J Soil Biol Ecol 15:109–116Google Scholar
  5. Barea J, Jeffries P (1995) Arbuscular mycorrhizas in sustainable soil plant systems. In: Hock B, Varma A (eds) Mycorrhiza structure, function, molecular biology and biotechnology. Springer, Heidelberg, pp 521–559Google Scholar
  6. Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181PubMedCrossRefGoogle Scholar
  7. Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in mown grassland. J Ecol 84(1):71–82CrossRefGoogle Scholar
  8. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  9. Clapp JP, Rodriguez A, Dodd JC (2001) Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum spores. New Phytol 149:539–554CrossRefGoogle Scholar
  10. Dehn B, Schüepp H (1990) Influence of VA mycorrhizae on the uptake and distribution of heavy metals in plants. Agric Ecosyst Environ 29:79–83CrossRefGoogle Scholar
  11. del Val C, Barea JM, Azcón-Aguilar C (1999) Assessing tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge contaminated soils. Appl Soil Ecol 11:261–269CrossRefGoogle Scholar
  12. Dematheis F, Kurtz B, Vidal S, Smalla K (2013) Multitrophic interactions among Western Corn Rootworm, Glomus intraradices and microbial communities in the rhizosphere and endorhiza of maize. Front Microbiol 4:357PubMedPubMedCentralCrossRefGoogle Scholar
  13. Diaz G, Azcón-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180(2):241–249CrossRefGoogle Scholar
  14. Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126PubMedCrossRefGoogle Scholar
  15. Gadd GM (2005) Microorganisms in toxic metal-polluted soils. In: Microorganisms in soils: roles in genesis and functions. Soil biology, vol 5. Springer, Berlin, pp 325–356CrossRefGoogle Scholar
  16. Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534Google Scholar
  17. Giasson P, Jaouich A, Cayer P, Gagné S, Moutoglis P, Massicotte L (2006) Enhanced phytoremediation: a study of mycorrhizoremediation of heavy metal contaminated soil. Remediat J 17(1):97–110CrossRefGoogle Scholar
  18. Giasson P, Karam A, Jaouich A (2008) Arbuscular mycorrhizae and alleviation of soil stresses on plant growth. In: Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 99–134CrossRefGoogle Scholar
  19. Gonzalez-Chavez CD, Haen J, Vangronsveld J, Dodd JC (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp.(arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297CrossRefGoogle Scholar
  20. Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323PubMedCrossRefGoogle Scholar
  21. Gonzalez-Guerrero M, Melville LH, Ferrol N, Lott JNA, Azcon-Aguilar C, Peterson RL (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110PubMedCrossRefGoogle Scholar
  22. Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal Phytoremediation. Planta 223:1115–1122PubMedCrossRefGoogle Scholar
  23. Hart MM, Reader RJ, Klironomos JN (2003) Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol 18(8):418–423CrossRefGoogle Scholar
  24. Hassan SED, Boon EVA, St-Arnaud MARC, Hijri M (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol 20(16):3469–3483CrossRefGoogle Scholar
  25. Hiiesalu I, Pärtel M, Davison J, Gerhold P, Metsis M, Moora M, Öpik M, Vasar M, Zobel M, Wilson SD (2014) Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytol 203(1):233–244PubMedCrossRefGoogle Scholar
  26. Hildebrandt U, Kaldorf M, Bothe M (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. Plant Physiol 154:709–717CrossRefGoogle Scholar
  27. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(1):139–146PubMedCrossRefGoogle Scholar
  28. Joner E, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–360CrossRefGoogle Scholar
  29. Joner E, Leyval C (2001) Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soil 33:351–357CrossRefGoogle Scholar
  30. Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234CrossRefGoogle Scholar
  31. Kaldorf M, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728CrossRefGoogle Scholar
  32. Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Berlin, pp 31–64CrossRefGoogle Scholar
  33. Kapoor A, Viraraghavan T (1995) Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters. Bioresour Technol 53:195–206Google Scholar
  34. Khade SW, Adholeya A (2009) Arbuscular mycorrhizal association in plants growing on metal contaminated and noncontaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India. Water Air Soil Pollut 202:45–56CrossRefGoogle Scholar
  35. Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364PubMedCrossRefGoogle Scholar
  36. Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223PubMedCrossRefGoogle Scholar
  37. Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745–748PubMedCrossRefGoogle Scholar
  38. Kumar S, Adholeya A (2013) Genetic variability within n-rDNA region of ectomycorrhizal isolates originating from temperate ecosystems. Afr J Biotechnol 12(22):3390–3398Google Scholar
  39. Kumar S, Adholeya A (2018) Congruence of morphology and fatty acid methyl ester profile (FAME profile) revealed low mycorrhizal diversity in soil contaminated with tannary sludge. Pollut Res 37:S71–S81Google Scholar
  40. Kumar S, Chaurasia P, Kumar A (2016) Isolation and characterization of microbial strains from textile industry effluents of Bhilwara, India: analysis with bioremediation. J Chem Pharm Res 8(4):143–150Google Scholar
  41. Lanfranco LA, Bolchi EC, Ros S, Ottonello P, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67PubMedPubMedCentralCrossRefGoogle Scholar
  42. Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 139(1):1–8PubMedCrossRefGoogle Scholar
  43. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153CrossRefGoogle Scholar
  44. Liu FH, Li ZJ, Liu QY, He H, Liang XN, Lai ZJ (2003) Introduction to the wild resources of the genus Boehmeria Jacq in China. Genet Resour Crop Evol 50:793–797CrossRefGoogle Scholar
  45. McGonigle TP, Miller MH (1999) Winter survival of extraradical hyphae and spores of arbuscular mycorrhizal fungi in the field. Appl Soil Ecol 12:41–50CrossRefGoogle Scholar
  46. Medinger R, Nolte V, Pandey RV, Jost S, Ottenwaelder B, Schloetterer C, Boenigk J (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19:32–40PubMedPubMedCentralCrossRefGoogle Scholar
  47. Merryweather J, Fitter A (1998) The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta-II. Seasonal and spatial patterns of fungal populations. New Phytol 138:131–142CrossRefGoogle Scholar
  48. Mertz W (1981) The essential trace elements. Science 213:1332–1338PubMedCrossRefGoogle Scholar
  49. Mozafar AA, Ruh T, Frossard R (2000) Tillage intensity, mycorrhizal and nonmycorrhizal fungi, and nutrient concentrations in maize, wheat, and canola. Agron J 92(6):1117–1124CrossRefGoogle Scholar
  50. Nazir A, Bareen F (2011) Synergistic effect of Glomus fasciculatum and Trichoderma pseudokoningii on Heliathus annuus to decontaminate tannery sludge from toxic metals. Afr J Biotechnol 10(22):4612–4618Google Scholar
  51. Pawlowska TE, Charvat I (2004) Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649PubMedPubMedCentralCrossRefGoogle Scholar
  52. Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer, Cham, pp 1–7Google Scholar
  53. Raman N, Nagarajan N, Gopinathan S, Sambandan K (1993) Mycorrhizal status of plant species colonizing a magnesite mine spoil in India. Biol Fertil Soil 16:76–78CrossRefGoogle Scholar
  54. Raman N, Sambandan K (1998) Distribution of VAM fungi in tannery effluent polluted soils of Tamil Nadu, India. Bull Environ Contam Toxicol 60:142–150PubMedCrossRefGoogle Scholar
  55. Rashid A, NajmaAyub TA, Gul J, Khan AG (2009) Phytoaccumulation prospects of cadmium and zinc by mycorrhizal plant species growing in industrially polluted soils. Environ Geochem Health 31(1):91–98PubMedCrossRefGoogle Scholar
  56. Regvar M, Vogel K et al (2003) Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626PubMedCrossRefGoogle Scholar
  57. Sambadan K, Raman N, Kannan K (1991) Association of VAM fungi with Casuarina equisetifolia at different soil types in Tamil Nadu, India. In: Soerianegara I, Supriyanto (eds) Proceedings of second Asian conference on Mycorrhiza, pp 61–65Google Scholar
  58. Stover HJ, Naeth MA, Boldt-Burisch K (2018) Soil disturbance changes arbuscular mycorrhizal fungi richness and composition in a fescue grassland in Alberta Canada. Appl Soil Ecol 131:29–37CrossRefGoogle Scholar
  59. Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 137–149CrossRefGoogle Scholar
  60. Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13(4):185–190PubMedCrossRefGoogle Scholar
  61. Turrini A, Saran M, Giovannetti M, Oehl F (2018) Rhizoglomus venetianum, a new arbuscular mycorrhizal fungal species from a heavy metal-contaminated site, downtown Venice in Italy. Mycol Prog 17:1213–1224CrossRefGoogle Scholar
  62. Wei Y, Chen Z, Wu F, Li J, Shang Guan Y, Li F, Hou H (2015) Diversity of arbuscular mycorrhizal fungi associated with a sb accumulator plant, ramie (Boehmeria nivea), in an active Sb mining. J Microbiol Biotechnol 25:1205–1215PubMedCrossRefGoogle Scholar
  63. Weissenhorn I, Leyval C, Berthelin J (1993) Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils. Plant Soil 157(2):247–256CrossRefGoogle Scholar
  64. Wubet T, Weiß M, Kottke I, Oberwinkler F (2003) Morphology and molecular diversity of arbuscular mycorrhizal fungi in wild and cultivated yew (Taxus baccata). Can J Bot 81(3):255–266CrossRefGoogle Scholar
  65. Zhu YG, Christie P, Scott Laidlaw A (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42(2):193–199PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Agriculture, Department of Genetics and Plant Breeding, School of Agriculture (SAGR)Lovely Professional UniversityJalandharIndia
  2. 2.Department of Medical Laboratory Sciences, Lovely Faculty of Applied Medical Sciences (LFAMS)Lovely Professional UniversityJalandharIndia

Personalised recommendations