Advertisement

Microbe-Mediated Plant Growth Promotion: A Mechanistic Overview on Cultivable Plant Growth-Promoting Members

  • Swati Pattnaik
  • Balaram Mohapatra
  • Upendra Kumar
  • Matrujyoti Pattnaik
  • Deviprasad Samantaray
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 55)

Abstract

The global demand for increasing agricultural productivity and declining farming land resource has posed a severe threat to crop production and agroecosystems. The use of chemical and mineral fertilizers has boosted up the agricultural productivity but considerably diminished the soil fertility, soil health, and sustainability. Improvement in agricultural sustainability requires the combined holistic approach integrating optimal use of soil fertilization, soil physical properties, soil biological processes, and soil microbial diversity, combining integrated plant nutrient management. Since past few decades, plant growth-promoting bacteria (PGPB) and plant growth-promoting rhizobacteria (PGPR) have replaced the conventional use of chemical fertilizers and pesticides in horticulture, silviculture, agriculture, environmental remediation, and cleanup strategies, and utilization of such microbial candidates for improving soil health and nutrient availability for plants is a vital practice since antiquity. Apart from the phytostimulatory effects on plants, PGPBs are potent colonizers of plant root or rhizosphere that improve both crop and soil health through various direct and indirect approaches such as nitrogen fixation, phosphate solubilization, quorum sensing, siderophore production, antimicrobials, volatile organically, mineral solubilization, induced systemic resistance, nutrient acquisition, modification of soil texture, soil porosity, etc. Increase in biomass, yield, seedling emergence, root proliferation, and timely flowering are the direct benefits that make these microbes most preferred in the agricultural crop production, with a high market demand. Researchers are now moving way forward to decipher their molecular mechanisms of plant beneficiation through genomic comparisons, real-time protein expressions revealing the ecophysiology, and niche adaptation that might facilitate functioning of these beneficial microbes. In this chapter, we have highlighted the status and recent trends of some important plant-beneficial bacterial members, their growth-promoting abilities, and genomic perspectives for sustainable use in crop productivity.

References

  1. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ 26:1–20CrossRefGoogle Scholar
  2. Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris Nodules. Int J Syst Bacteriol 47:996–1006PubMedCrossRefGoogle Scholar
  3. Amer GA, Utkhede RS (2000) Development of formulations of biological agents for management of root rot of lettuce and cucumber. Can J Microbiol 46:809–816PubMedCrossRefGoogle Scholar
  4. Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190CrossRefGoogle Scholar
  5. Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162Google Scholar
  6. Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38PubMedGoogle Scholar
  7. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770Google Scholar
  8. Becking JH (1981) The family Azotobacteraceae. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 795–817CrossRefGoogle Scholar
  9. Becking JH (1999) The genus Beijerinckia. In: Dworkin M et al (eds) The prokaryotes, 3rd edn. Springer, New York. http://141.150.157.117:8080/prokPUB/index.htm
  10. Beijerinck MW (1901) Über ologonitrophile mikroben. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. II Abt, pp 561–582Google Scholar
  11. Berg G, Zachow C, Müller H, Philipps J, Tilcher R (2013) Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3:648–656CrossRefGoogle Scholar
  12. Berge O, Lodhi A, Brandelet G, Santaella C, Roncato MA, Christen R, Heulin T, Achouak W (2009) Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol 59:367–372PubMedCrossRefGoogle Scholar
  13. Berrada H, Fikri-Benbrahim K (2014) Taxonomy of the Rhizobia: current perspectives. Br Microbiol Res J 4:616–639CrossRefGoogle Scholar
  14. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefGoogle Scholar
  15. Cole MA, Elkan GH (1979) Multiple antibiotic resistance in Rhizobium japonicum. Appl Environ Microbiol 37:867–870PubMedPubMedCentralGoogle Scholar
  16. Dellagi A, Segond D, Rigault M, Fagard M, Simon C, Saindrenan P, Expert D (2009) Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status. Plant Physiol 150:1687–1696PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dutta S, Mishra AK, Dileep Kumar BS (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461CrossRefGoogle Scholar
  18. El-Badry M, Taha RM, El-Dougdoug KA, Gamal-Eldin H (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting Rhizobacteria. J Plant Dis Prot 113:247–251CrossRefGoogle Scholar
  19. Farmer EE (2001) Surface-to-air signals. Nature 411:854–856PubMedCrossRefGoogle Scholar
  20. Firrincieli A, Otillar R, Salamov A, Schmutz J, Khan Z, Redman RS, Fleck ND, Lindquist E, Griqoriev IV, Doty SL (2015) Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Front Microbiol 6:978.  https://doi.org/10.3389/fmicb.2015.00978 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194PubMedCrossRefGoogle Scholar
  22. Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LF, Krogfelt KA, Struve C, Triplett EW, Methe BA (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4:e1000141.  https://doi.org/10.1371/journal.pgen.1000141 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Frank B (1889) Uber die Pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 7:332–346Google Scholar
  24. Ganeshan G, Kumar M (2005) Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. J Plant Interact 1:123–134CrossRefGoogle Scholar
  25. Glick BR (1995) The enhancement of plant-growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  26. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Microbiol Res 169:30–39CrossRefGoogle Scholar
  27. Goswami D, Thakker JN, Dhandhukia PC, Tejada Moral M (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500.  https://doi.org/10.1080/23311932.2015.1127500 CrossRefGoogle Scholar
  28. Govindasamy V, Senthilkumar M, Kumar U, Annapurna K (2008) PGPR-biotechnology for management of abiotic and biotic stresses in crop plants. In: Potential microorganisms of sustainable agriculture. I K International, New Delhi, pp 27–48Google Scholar
  29. Govindasamy V, Senthilkumar M, Magheshwan V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibaccilus spp.: potential PGPR for sustainable agriculture. Microbiol Monogr 18:333–364CrossRefGoogle Scholar
  30. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  31. Gu T, Sun LN, Zhang J, Sui XH, Li SP (2014) Rhizobium flavum sp. nov., a triazophos-degrading bacterium isolated from soil under the long-term application of triazophos. Int J Syst Evol Microbiol 64:2017–2022PubMedCrossRefGoogle Scholar
  32. Gulati SL (1979) New nonsynthetic medium for Rhizobium culture production from wastes. Biotechnol Bioeng 21:1507–1515CrossRefGoogle Scholar
  33. Gupta A, Gopal M, Tilak KV (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862PubMedGoogle Scholar
  34. Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas G, Seshagiri S, Schuster SC, Rajesh P, Gupta R (2014) Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One 9:e104259PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microbiol Biochem 7:96–102Google Scholar
  36. Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211CrossRefGoogle Scholar
  37. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth pro-motion: a review. Ann Microbiol 60:579–598CrossRefGoogle Scholar
  38. Hunter WJ, Kuykendall LD, Manter DK (2007) Rhizobium selenireducens sp. nov., a selenite-reducing α Proteobacteria isolated from a bioreactor. Curr Microbiol 55:455–460PubMedCrossRefGoogle Scholar
  39. Idris AH, Labuschagne N, Korsten L (2007) Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol Control 40:97–106CrossRefGoogle Scholar
  40. Jia X, Slavin JA, Gombosi TI, Daldorff LKS, Toth G, van der Holst B (2015) Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: induction effect of the planetary conducting core on the global interaction. J Geophys Res Space Phys 120:4763–4775CrossRefGoogle Scholar
  41. Kaiya S, Rubaba O, Yoshida N, Yamada T, Hiraishi A (2012) Characterization of Rhizobium naphthalenivorans sp. nov. with special emphasis on aromatic compound degradation and multilocus sequence analysis of housekeeping genes. J Gen Appl Microbiol 58:211–224PubMedCrossRefGoogle Scholar
  42. Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50PubMedPubMedCentralCrossRefGoogle Scholar
  43. Karim MR, Rahman MA (2015) Drought risk management for increased cereal production in Asian least developed countries. Weather Clim Ext 7:24–35.  https://doi.org/10.1016/j.wace.2014.10.004 CrossRefGoogle Scholar
  44. Kasa P, Modugapalem H, Battini K (2015) Isolation, screening, and molecular characterization of plant growth promoting rhizobacteria isolates of Azotobacter and Trichoderma and their beneficial activities. J Nat Sci Biol Med 6:360–363PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11:487–505CrossRefGoogle Scholar
  46. Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Böhm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy A, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorhölter F, Weidner S, Pühler A, Reinhold-Hurek B, Kaiser A, Goesmann A (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:385–391CrossRefGoogle Scholar
  47. Kumar U (2017) Diazotrophic microbes in rice: a boon to save nitrogen fertilizers. EC Microbiol 6:1–3Google Scholar
  48. Kumar U, Mishra S (2014) Functional and genetic diversity of 10 and 20 – metabolites producing fluorescent Pseudomonads from rhizosphere of rice (Oryza sativa L.). J Appl Zool Res 25:83–93Google Scholar
  49. Kumar U, Singh SD, Vithalkumar L, Ramadoss D, Annapurna K (2012) Functional diversity of plant growth promoting rhizobacteria from endorhizosphere of aromatic rice. Pusa AgriSci 35:103–108Google Scholar
  50. Kumar U, Dangar TK, Annapurna K (2013a) Functional interaction of diazotrophs and antagonistic rhizobacteria in sustainable development of agricultural products. In: Chauhan A, Bharati PK (eds) Environment conservation and biotechnology. Discovery Publishing House, New Delhi, pp 149–166Google Scholar
  51. Kumar U, Vithalkumar L, Annapurna K (2013b) Antagonistic potential and functional diversity of endo- and rhizospheric bacteria of basmati rice. Oryza 50:162–168Google Scholar
  52. Kumar U, Agrawal C, Paul S, Annapurna K (2013c) Endophytes as biocontrol agents of plant pathogens and insects. Kavaka 41:92–95Google Scholar
  53. Kumar U, Panneerselvam P, Jambhulkar NN, Annapurna K (2016a) Effect of inoculation of Rhizobacterial consortia for enhancement of the growth promotion and nutrient uptake in basmati rice cultivar Pusa Sugandha 4. Oryza 53:282–287Google Scholar
  54. Kumar U, Banik A, Panneerselvam P, Annapurna K (2016b) Lower frequency and diversity of antibiotic-producing fluorescent Pseudomonads in rhizosphere of Indian rapeseed-mustard (Brassica juncea L. Czern.). Proc Natl Acad Sci India Sect B Biol Sci 88:579–586.  https://doi.org/10.1007/s40011-016-0792-1 CrossRefGoogle Scholar
  55. Kumar U, Shahid M, Tripathi R, Mohanty S, Kumar A, Bhattacharyya P, Lal B, Gautam P, Raja R, Panda BB, Jambhulakar NN, Shukla AK, Nayak AK (2017a) Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecol Indic 73:536–543CrossRefGoogle Scholar
  56. Kumar U, Panneerselvam P, Govindasamy V, Vithalkumar L, Senthilkumar M, Banik A, Annapurna K (2017b) Long-term aromatic rice cultivation effect on frequency and diversity of diazotrophs in its rhizosphere. Ecol Eng 101:227–236CrossRefGoogle Scholar
  57. Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303PubMedCrossRefGoogle Scholar
  58. Ladeiro B (2012) Saline agriculture in the 21st century: using salt contaminated resources to cope food requirements. J Bot 2012:310705.  https://doi.org/10.1155/2012/310705 CrossRefGoogle Scholar
  59. Leeman M, den Ouden FM, van Pelt JA, Cornelissen C, Matamala-Garros A, Bakker PAHM, Schippers B (1996) Suppression of Fusarium wilt of radish by co-inoculation of fluorescent Pseudomonas spp. and root-colonizing fungi. Eur J Plant Pathol 102:21–31CrossRefGoogle Scholar
  60. Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208PubMedPubMedCentralCrossRefGoogle Scholar
  61. Liu FC, Xing SJ, Ma HL, Du ZY, Ma BY (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164PubMedCrossRefGoogle Scholar
  62. Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13CrossRefGoogle Scholar
  63. López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant-Microbe Interact 20:207–217PubMedCrossRefGoogle Scholar
  64. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Review Antonie Van Leeuwenhoek 86:1–25PubMedCrossRefGoogle Scholar
  65. Mageshwaran V, Gupta A, Kumar U, Padaria J, Annapurna K (2010) Effect of seed treatment with Paenibacillus polymyxa HKA-15 on suppression of charcoal rot disease and growth promotion of soybean. Pusa AgriSci 33:14–19Google Scholar
  66. Mageshwaran V, Mondal KK, Kumar U, Annapurna K (2012) Role of antibiosis on suppression of bacterial common blight disease in French bean by Paenibacillus polymyxa strain HKA-15. Afr J Biotechnol 11:12389–12395Google Scholar
  67. Martinez-Garcia PM, Ruano-Rosa D, Schiliro E, Prieto P, Ramos C, Rodríguez-Palenzuela P, Mercado-Blanco J (2015) Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahlia. Stand Genomic Sci 10:10.  https://doi.org/10.1186/1944-3277-10-10 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147CrossRefGoogle Scholar
  69. McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286CrossRefGoogle Scholar
  70. Megias E, Megias M, Ollero FJ, Hungria M (2016) Draft genome sequence of Pantoea ananatis strain AMG521, a rice plant growth-promoting bacterial endophyte isolated from the Guadalquivir marshes in southern Spain. Genome Announc 4:e01681–e01615.  https://doi.org/10.1128/genomeA.01681-15 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Meziane H, Van der Sluis I, Van Loon LC, Hofte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185PubMedCrossRefGoogle Scholar
  72. Mohapatra B, Sarkar A, Joshi S, Chatterjee A, Kazy SK, Maiti MK, Satyanarayana T, Sar P (2016) An arsenate reducing and alkane-metabolizing novel bacterium, Rhizobium arsenicireducens sp. nov., isolated from arsenic-rich groundwater. Arch Microbiol 199:191–201PubMedCrossRefGoogle Scholar
  73. Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:65PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mousavi SA, Osterman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindstrom K (2014) Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215PubMedCrossRefGoogle Scholar
  75. Mrkovacki N, Milic V (2001) Use of Azotobacter chroococcum as potentially useful in agricultural application. Ann Microbiol 51:145–158Google Scholar
  76. Noel TC, ShengC YCK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283PubMedCrossRefGoogle Scholar
  77. Ortiz Castro R, Contreras Cornejo HA, Macías Rodríguez L, López Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:1–12CrossRefGoogle Scholar
  78. Parker DL, Morita T, Mozafarzadeh ML, Verity R, McCarthy JK, Tebo BM (2007) Inter-relationships of MnO2 precipitation, siderophore-Mn(III) complex formation, siderophore degradation, and iron limitation in Mn(II)-oxidizing bacterial cultures. Geochim Cosmochim Acta 71:5672–5683CrossRefGoogle Scholar
  79. Peix A, Valverde A, Rivas R, Igual JM, Ramírez-Bahena MH, Mateos PF, Santa-Regina I, Rodríguez-Barrueco C, Martínez-Molina E, Velázquez E (2007) Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 57:1286–1290PubMedCrossRefGoogle Scholar
  80. Peix A, Ramírez-Bahena MH, Velázquez E (2009) Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol 9:1132–1147PubMedCrossRefGoogle Scholar
  81. Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514PubMedCrossRefGoogle Scholar
  82. Premjanu N, Jayanthy C (2012) Endophytic fungi a repository of bioactive compounds – a review. Int J Inst Phar Life Sci 2:135–162Google Scholar
  83. Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062PubMedCrossRefGoogle Scholar
  84. Raju BR, Mathithumilan B, Pratibha MD, Sheshshayee MS, Mohanraju B, Haritha B, Shashank PR, Kumar U (2014) Drought adaptive traits in rice: need for comprehensive approach. In: Ratnakumar P, Bhagat K, Singh Y (eds) Challenges and prospective of plant abiotic stress. Today & Tomorrow’s Printers and Publishers, New Delhi, pp 311–347Google Scholar
  85. Rashid MH, Young JP, Everall I, Clercx P, Willems A, Santhosh BM, Wink M (2015) Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules. Int J Syst Evol Microbiol 65:3037–3045PubMedCrossRefGoogle Scholar
  86. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023PubMedCrossRefGoogle Scholar
  87. Richardson AE, Baréa JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  88. Rodriguez RJ, Henson J, Volkenburgh EV, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416PubMedCrossRefGoogle Scholar
  89. Ruchi G, Anshu G, Khare SK (2008) Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresour Technol 99:4796–4802PubMedCrossRefGoogle Scholar
  90. Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383CrossRefGoogle Scholar
  91. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932PubMedCrossRefGoogle Scholar
  92. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sahoo S, Panneerselvam P, Chowdhury T, Kumar A, Kumar U, Jahan A, Senapati A, Anandam A (2017) Understanding the AM fungal association in flooded rice under elevated CO2 condition. Oryza 54:290–297CrossRefGoogle Scholar
  94. Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants–new avenues for phytochemicals. J Phytol 2:91–100Google Scholar
  95. Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420CrossRefGoogle Scholar
  96. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757PubMedCrossRefGoogle Scholar
  97. Vacheron J, Desbrosse G, Bouffaud ML, Touraine B, Loccoz YM, Muller D, Legendre L, Wisniewski PD, Combaret CP (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:1–19CrossRefGoogle Scholar
  98. Validov S, Kamilova F, Qi S, Stephan D, Wang JJ, Makarova N, Lugtenberg B (2007) Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stone wool substrate. J Appl Microbiol 102:461–471PubMedCrossRefGoogle Scholar
  99. Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E (2006) Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637PubMedCrossRefGoogle Scholar
  100. van Berkum P, Beyene D, Eardly BD (1996) Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). Int J Syst Bacteriol 46:240–244PubMedCrossRefGoogle Scholar
  101. Velazhahan R, Samiyappan R, Vidhyasekaran P (1999) Relationship between antagonistic activities of Pseudomonas fluorescens isolates against Rhizoctonia solani and their production of lytic enzyme. J Plant Dis Protect 106:244–250Google Scholar
  102. Viteri SE, Schmidt EL (1987) Ecology of indigenous soil rhizobia: response of Bradyrhizobium japonicum to readily available substrates. Appl Environ Microbiol 53:1872–1875PubMedPubMedCentralGoogle Scholar
  103. Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali Z (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24PubMedCrossRefGoogle Scholar
  104. Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176CrossRefGoogle Scholar
  105. Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX (2002) Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigoferae spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 52:2231–2239PubMedGoogle Scholar
  106. Wei GH, Tan ZY, Zhu ME, Wang ET, Han SZ, Chen WX (2003) Characterization of Rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53:1575–1583PubMedCrossRefGoogle Scholar
  107. Weilharter A, Mitter B, Shin MW, Chain PS, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant-growth promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384PubMedPubMedCentralCrossRefGoogle Scholar
  108. Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348PubMedCrossRefGoogle Scholar
  109. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedCrossRefGoogle Scholar
  110. Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14CrossRefGoogle Scholar
  111. Yan S, Liu H, Mohr TJ, Jenrette J, Chiodini R, Zaccardelli M, Setubal JC, Vinatzer BA (2008) Role of recombination in the evolution of the model plant pathogen Pseudomonas syringae pv. tomato DC3000, a very atypical tomato strain. Appl Environ Microbiol 74:3171–3181PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4PubMedCrossRefGoogle Scholar
  113. Young JM, Kuykendall ID, Martínez-Romero E, Kerr A, Sawada HA (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103PubMedCrossRefGoogle Scholar
  114. Yuwono T, Handayani D, Soedarsono J (2005) The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust J Agr Res 56:715–721CrossRefGoogle Scholar
  115. Zakhia F, de Lajudie P (2001) Taxonomy of rhizobia. Agronomie 21:569–576CrossRefGoogle Scholar
  116. Zhang GX, Ren SZ, Xu MY, Zeng GQ, Luo HD, Chen JL, Tan ZY, Sun GP (2011) Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. Int J Syst Evol Microbiol 61:816–822PubMedCrossRefGoogle Scholar
  117. Zhang X, Li B, Wang H, Sui X, Ma X, Hong Q, Jiang R (2012) Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 62:1871–1876PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Swati Pattnaik
    • 1
  • Balaram Mohapatra
    • 2
  • Upendra Kumar
    • 3
  • Matrujyoti Pattnaik
    • 4
  • Deviprasad Samantaray
    • 1
  1. 1.Department of MicrobiologyCollege of Basic Science and Humanities, Odisha University of Agriculture and Technology (OUAT)BhubaneswarIndia
  2. 2.Department of BiotechnologyIndian Institute of TechnologyKharagpurIndia
  3. 3.India Crop Production DivisionICAR-National Rice Research InstituteCuttackIndia
  4. 4.Department of Public HealthICMR-Regional Medical Research CentreBhubaneswarIndia

Personalised recommendations