Skip to main content

Fungi as Biological Control Agents

  • Chapter
  • First Online:
Biofertilizers for Sustainable Agriculture and Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 55))

Abstract

Nowadays, use of a fungal biocontrol agent (BCA) is considered to be a rapidly developing natural phenomenon in research area with implications for plant yield and food production. Fungal biocontrol agents (BCAs) do not cause any harm to the environment, and they generally do not develop resistance in various types of insects, pests, weeds, and pathogens due to their complex mode of action. They have been proved to be an alternative against the undesirable use of chemical pesticides. The advantage of fungi to be used as biological control agents is that they need not be ingested by the insect hosts, but they can invade directly through the insect’s cuticle and control all insect pests including sucking insects, but in the case of viruses and bacteria, this is not possible. The present literature includes mechanisms of fungal biological control agents, advantages and limitations of BCAs, and list of commercially available BCAs against the insects, pests, weeds, nematodes, and plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas A, Jiang D, Fu Y (2017) Trichoderma Spp. as antagonist of Rhizoctonia solani. J Plant Pathol Microbiol 8(3):1–9

    Google Scholar 

  • Araujo JM, Araújo JV, Braga FR, Ferreira SR, Tavela AO (2013) Predatory activity of chlamydospores of the fungus Pochonia chlamydosporia on Toxocara canis eggs under laboratory conditions. Rev Bras Parasitol Vet 22:171–174

    Article  PubMed  Google Scholar 

  • Asad SA, Ali N, Hameed A, Khan SA, Ahmad R, Bilal M, Shahzad M, Tabassum A (2014) Biocontrol efficacy of different isolates of Trichoderma against soil borne pathogen Rhizoctonia solani. Pol J Microbiol 63(1):95–103

    PubMed  Google Scholar 

  • Bae H, Roberts DP, Lim HS et al (2001) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant Microbe Interact 24:336–351

    Article  CAS  Google Scholar 

  • Bakers KF, Cook RJ (1974) Biological control of plant pathogens. W.H. Freeman, San Francisco, 433 pp

    Google Scholar 

  • Benítez T, Rincón AM, Limón MC et al (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Blakeman JP (1978) Microbial competition for nutrients and germination of fungal spores. Ann Appl Biol 89:151–155

    Article  Google Scholar 

  • Blakeman JP (1985) Ecological succession of leaf surface microorganisms in relation to biological control. In: Windels CE, Lindow SE (eds) Biological control on the phylloplane. APS, St Paul, MN, pp 6–7

    Google Scholar 

  • Blakeman JP (1993) Pathogens in the foliar environment. Plant Pathol 42:479–493

    Article  Google Scholar 

  • Blakeman JP, Fokkema NJ (1982) Potential for biological control of plant diseases on the phylloplane. Annu Rev Phytopathol 20:167–192

    Article  Google Scholar 

  • Brouwer A, Longnecker MP, Birnbaum LS, Cogliano J, Kostyniak P, Moore J, Schantz S, Winneke G (1999) Characterization of potential endocrine related health effects at lowdose levels of exposure to PCBs. Environ Health Perspect 107:639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burrage SW (1971) The micro-climate at the leaf surface. In: Preece TE, Dickinson CH (eds) Ecology of leaf surface microorganisms. Academic Press, London, pp 91–101

    Google Scholar 

  • Calistru C, McLean M, Berjak P (1997) In vitro studies on the potential for biological control of Aspergillus flavus and Fusarium moniliforme by Trichoderma species 1. Macroscopical and microscopical observations of fungal interactions. Mycopathologia 139:115–121

    Article  CAS  PubMed  Google Scholar 

  • Chandramohan S (1999) Multiple-pathogen strategy for bioherbicidal control of several weeds. PhD Dissertation, University of Florida, Gainesville, 191 pp

    Google Scholar 

  • Chandramohan S, Charudattan R, Sonoda RM, Singh M (2000) Multiple-pathogen strategy: a novel approach for bioherbicidal control of several weeds. In: Abstracts, 3rd international weed science congress, Foz do Iguaçu, Brazil, June 2000, p 182

    Google Scholar 

  • Chanway CP, Nelson LM, Holl FB (1988) Cultivar-specific growth promotion of spring wheat (Triticum aestivum L.) by coexistans Bacillus sp. Can J Microbiol 34:925–929

    Article  Google Scholar 

  • Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–260

    Article  Google Scholar 

  • Chet I, Inbar J (1994) Biological control of fungal pathogens. Appl Biochem Biotechnol 48:37–43

    Article  CAS  PubMed  Google Scholar 

  • Chet I, Barak Z, Oppenheim H (1993) Genetic engineering of microorganisms for improved biocontrolacticity. In: Chet I (ed) Biotechnology in plant disease control. Wiley, New York, pp 211–235

    Google Scholar 

  • Contreras-Cornejo H, Ortiz-Castro R, López-Bucio J (2013) Promotion of plant growth and the induction of systemic defence by Trichoderma: physiology, genetics and gene expression. In: Mukherjee PK (ed) Trichoderma biology and applications. CABI, London, pp 175–196

    Google Scholar 

  • Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A et al (2015) Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Mol Plant Microbe Interact 28:701–710

    Article  CAS  PubMed  Google Scholar 

  • Corke ATK, Hunter T (1979) Biocontrol of Nectria galligena infections of pruning wounds on apple shoots. J Hortic Sci 54:47–47

    Article  Google Scholar 

  • Crisp TM, Clegg ED, Cooper RL, Wood WP, Anderson DG, Baeteke KP, Hoffmann JL, Morrow MS, Rodier DJ, Schaeffer JE, Touart LW, Zeeman MG, Patel YM (1998) Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect 106:11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen JM, Kable PF, Catt M (1973) Epidemic spread of a rust imported for biological control. Nature 244:462–464

    Article  Google Scholar 

  • Cutter EG (1976) Aspects of the structure and development of the aerial surfaces of higher plants. In: Dickinson CH, Preece TF (eds) Microbiology of aerial plant surfaces. Academic Press, London, pp 1–40

    Google Scholar 

  • de Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Cont 43:237–256

    Article  CAS  Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y, Höfte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of botrytis cinerea. Eur J Plant Pathol 104:279–286

    Article  Google Scholar 

  • Eduati F, Mangravite LM, Wang T, Tang H, Bare JC, Huang R, Norman T, Kellen M, Menden MP, Yang J, Zhan X, Zhong R, Xiao G, Xia M, Abdo N, Kosyk O, NIEHS-NCATS-UNC DREAM Toxicogenetics Collaboration, Friend S, Dearry A, Simeonov A, Tice RR, Rusyn I, Wright FA, Stolovitzky G, Xie Y, Saez-Rodriguez J (2015) Prediction of human population responses to toxic compounds by a collaborative competition. Nat Biotechnol 33(9):933–939

    Article  CAS  PubMed  Google Scholar 

  • Eisendle M, Oberegger H, Buttinger R, Illmer P, Haas H (2004) Biosynthesis and uptake of siderophores is controlled by the PacCmediated ambient-pH regulatory system in Aspergillus nidulans. Euk Cell 3:561–556

    Article  CAS  Google Scholar 

  • Elad Y (1995) Mycoparasitism. In: Kohmoto K, Singh US, Singh RP (eds) Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular basis, vol 2: Eukaryotes. Pergamon, Elsevier, Oxford, pp 289–307

    Google Scholar 

  • Elad Y, Zimand G, Zaqs Y, Zuriel S, Chet I (1993) Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathol 42:324–332

    Article  CAS  Google Scholar 

  • Emge RG, Melching JS, Kingsolver CH (1981) Epidemiology of Puccinia chondn’llina, a rust pathogen for the biological control of rush skeleton weed in the United States. Phytopathology 7:839–843

    Article  Google Scholar 

  • Feng MG, Poprwaski TJ (1994) Khachatourian GG (1994) Production, formulation and application of the entomopathogenic fungus beauveria bassiana for insect control: current status. Biocont Sci Technol 4:3–34

    Article  Google Scholar 

  • Forget G (1993) Balancing the need for pesticides with the risk to human health. In: Forget G, Goodman T, de Villiers A (eds) Impact of pesticide use on health in developing countries. IDRC, Ottawa, p 2

    Google Scholar 

  • Forum E (1999) Killer environment. Environ Health Perspect 107:A62

    Article  Google Scholar 

  • Frassy LN, Braga FR, Silva AR, Araújo JV, Ferreira SR, Freitas LG (2010) Destruição de ovos de Toxocara canis pelo fungo nematófago Pochonia chlamydosporia. Rev Soc Bras Med Trop 43:102–104

    Article  PubMed  Google Scholar 

  • Funck Jensen D, Lumsden RD (1999) In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Biological control of soilborne pathogens. Kluwer Academic, Wageningen, pp 319–337

    Google Scholar 

  • Ganesan S, Ganesh Kuppusamy R, Sekar R (2007) Integrated management of stem rot disease (Sclerotium rolfsii) of groundnut (Arachis hypogaea L.) using rhizobium and trichoderma harzianum (ITCC – 4572). Turk J Agric For 31:103–108

    Google Scholar 

  • Hammerschmidt R, Nuckles E, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  • Hanson LE (2000) Reduction of Verticillium wilt symptoms in cotton following seed treatment with Trichoderma virens. J Cotton Sci 4:224–231

    Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol. Changes in perceptions derived from reasearch on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  CAS  PubMed  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hasan S (1972) Specificity and host specialization of Pucciniachondrillina. Ann Appl Biol 72:257–263

    Article  Google Scholar 

  • Hasan S, Wapshere AJ (1973) The biology of Pucciniachondrillina, a potential biological control agent of skeleton weed. Ann Appl Biol 74:325–332

    Article  Google Scholar 

  • Howell C, Stipanovic R, Lumsden R (1993) Antibiotic production by strains of Gliocladiumvirens and its relation to biocontrol of cotton seedling diseases. Biocontrol Sci Tech 3:435–441

    Article  Google Scholar 

  • Hurley PM, Hill RN, Whiting RJ (1998) Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumours in rodents. Environ Health Perspect 106:437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igbedioh SO (1991) Effects of agricultural pesticides on humans, animals and higher plants in developing countries. Arch Environ Health 46:218

    Article  CAS  PubMed  Google Scholar 

  • Jeyaratnam J (1985) Health problems of pesticide usage in the third world. BMJ 42:505

    CAS  Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Tuzun S, Kuc J (1992) Proposed definitions related to induced resistance. Biocontrol Sci Tech 2:349–351

    Article  Google Scholar 

  • Kuc J (1987) Plant immunization and its applicability for disease control. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, NY, pp 255–274

    Google Scholar 

  • Lacey LA, Frutos R, Kaya HK, Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biolog Cont 21:230–248

    Article  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Inverteb Pathol 132:1–41

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  • Liroff RA (2000) Balancing risks of DDT and malaria in the global POPs treaty. Pestic Safety News 4:3

    Google Scholar 

  • Lo CT (1997) Biological control of turfgrass diseases using Trichoderma harzanium. Plant Pro Bull 39:207–225

    CAS  Google Scholar 

  • Lysek H, Sterba J (1991) Colonization of Ascaris lumbricoides eggs by the fungus Verticillium chlamydosporium Goddard. Folia Parasitol 38:255–259

    CAS  PubMed  Google Scholar 

  • Mello INK, Braga FR, Monteiro T, Freitas LG, Araujo JM, Soares FEF, Araújo JV (2013) Biological control of infective larvae of Ancylostoma spp. in beach sand. Rev Iberoam Micol. https://doi.org/10.1016/j.riam.2013.05.003

    Article  Google Scholar 

  • Mendoza JLH, Pérez MIS, Prieto JMG, Velásquez JDCQ, Olivares JGG, Langarica HRG (2015) Antibiosis of Trichoderma spp strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina. Braz J Microbiol 46(4):1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Menendez AB, Godeas A (1998) Biological control of Sclerotinia sclerotiorum attacking soybean plants. Degradation of the cell walls of this pathogen by Trichoderma harzianum (BAFC 742). Mycopathologia 142:153–160

    Article  CAS  PubMed  Google Scholar 

  • Metraux JP, Boller T (1986) Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infection. Physiol Mol Plant Pathol 28:161–169

    Article  CAS  Google Scholar 

  • Motlagh MRS, Samini Z (2013) Evaluation of Trichoderma spp., as biological agents in some of plant pathogens. Ann Biol Res 4(3):173–179

    Google Scholar 

  • Müller A, Faubert P, Hagen M et al (2013) Volatile profiles of fungi-chemotyping of species and ecological functions. Fungal Genet Biol 54(25):33

    Google Scholar 

  • Nelson ME, Powelson ML (1988) Biological control of gray mold of snap beans by Trichodermahamatum. Plant Dis 72:727–729

    Article  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Oerke EC, Dehne HW, Schönbeck F, Weber A (1994) Crop production and crop protection. Estimated losses in major food and cash crops. Elsevier, Amsterdam

    Google Scholar 

  • Ogawa K, Komada H (1986) Induction of systemic resistance against Fusarium wilt of sweet potato. Ann Phytopath Soc Jap 52:15–21

    Article  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428. https://doi.org/10.1371/journal.pone.0066428

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Freeman S, Clifton DR, Morrel J, Brown GS, Rodriguez RJ (1999) Biochemicalanalysis of plant protection afforded by a non-pathogenic endophytic mutant of Colletotrichum magna (teleomorph: Glomerella magna; Jenkins and Winstead, 1964). Plant Physiol 119:795–803

    Article  CAS  PubMed  Google Scholar 

  • Roghelia V, Patel VH (2017) Effect of pesticides on human health. Res Rev J Health Profes 7(2):30–40

    Google Scholar 

  • Sequeira L (1983) Mechanisms of induced resistance in plants. Annu Rev Microbiol 37:51–79

    Article  CAS  PubMed  Google Scholar 

  • Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    Article  CAS  PubMed  Google Scholar 

  • Shaul O, Galili S, Volpin H, Ginzberg I, Elad Y, Chet I, Kapulnik Y (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol Plant-Microbe Int 12:1000–1007

    Article  CAS  Google Scholar 

  • Shtienberg D, Elad Y (1997) Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology 87:332–339

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui Y, Meon S, Ismail MR, Ali A (2008) Trichoderma-fortified compost extracts for the control of choanephora wet rot in okra production. Crop Protect 27:385–390

    Article  Google Scholar 

  • St. Arnaud M, Hamel C, Caron M, Fortin JA (1994) Inhibition of Pythium ultimum in roots and growth substances of mycorrhizal Tagetes patula colonized with Glomusintra radicices. Can J Plant Pathol 16:187–194

    Article  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Ann Rev Phytopathol 43:83–116. https://doi.org/10.1146/annurev.phyto.43.113004.133839

    Article  CAS  Google Scholar 

  • Szekeres A, Leitgeb B, Kredics L, Zsuzsanna A, Hatvani L, Manczinger L, Vagvolgyi C (2005) Peptaibols and related peptaibiotics of Trichoderma. Acta Microbiol Immunol Hung 52:137–168

    Article  CAS  PubMed  Google Scholar 

  • Teng PS (ed) (1987) Crop loss assessment and pest management. APS Press, St Paul

    Google Scholar 

  • Teng PS, Krupa SV (eds) (1980) Assessment of losses which constrain production and crop improvement in agriculture and forestry. Proceedings of the E. C. Stackman Commemorative Symposium. University of Minnesota, St. Paul

    Google Scholar 

  • Tjamos EC, Papavizas GC, Cook RJ (1992) In: Tjamos EC, Papavizas GC, Cook RJ (eds) Biological control of plant diseases. Progress and challenges for the future. Plenum Press, New York

    Chapter  Google Scholar 

  • Tronsmo A, Dennis C (1977) The use of Trichoderma species to control strawberry fruit rots. Neth J Plant Path 83(Suppl 1):449–455

    Article  Google Scholar 

  • Vargas WA, Mukherjee PK, Laughlin D, Wiest A, Moran-Diez ME, Kenerley CM (2014) Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology 160:2319–2330

    Article  CAS  PubMed  Google Scholar 

  • Velázquez-Robledo R, Contreras-Cornejo H, Macías-Rodríguez LI et al (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism, and induction of plant defense responses. Mol Plant Microbe Interact 24(1459):7

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL et al (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant P 72:80–86

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL et al (2012) Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun 7:1545–1550

    CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra L, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Myco J 8(Suppl-1, M5):127–139

    Article  Google Scholar 

  • Ward E, Kerry BR, Manzanilla-López RH, Mutua G, Devonshire J, Kimenju J, Hirsch PR (2012) The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: implications for nematode biocontrol. PLoS One 7:35657

    Article  CAS  Google Scholar 

  • Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22:837–845

    Google Scholar 

  • WHO (1990) Public health impact of pesticides used in agriculture. World Health Organization, Geneva, p 88

    Google Scholar 

  • Wiest A, Grzegorski D, Xu B, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibolsynthetase. J Biol Chem 277:20862–20868

    Article  CAS  PubMed  Google Scholar 

  • Wilhite SE, Lumsden RD, Straney DC (1994) Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladium virens in relation to suppression of Pythium damping-off. Phytopathology 84:816–821

    Article  CAS  Google Scholar 

  • Yang J, Wang L, Ji X, Feng Y, Li X, Zou C, Xu J, Ren Y, Mi Q, Wu J, Liu S, Liu Y, Huang X, Wang H, Niu X, Li J, Liang L, Luo Y, Ji K, Zhou W, Yu Z, Li G, Liu Y, Li L, Qiao M, Feng L, Zhang KQ (2011) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7:1002179

    Article  CAS  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    CAS  PubMed  Google Scholar 

  • Yusof M, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumara M (2016) Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrasonic Chem 29:568–576

    CAS  Google Scholar 

  • Zeise L, Bois FY, Chiu WA, Hattis D, Rusyn I, Guyton KZ (2013) Addressing human variability in next-generation human health risk assessments of environmental chemicals. Environ Health Perspect 121(1):23–31

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savita, Sharma, A. (2019). Fungi as Biological Control Agents. In: Giri, B., Prasad, R., Wu, QS., Varma, A. (eds) Biofertilizers for Sustainable Agriculture and Environment . Soil Biology, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_18

Download citation

Publish with us

Policies and ethics