Skip to main content

Circadian Rhythms in Plant-Microbe Interaction: For Better Performance of Bioinoculants in the Agricultural Fields

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 55))

Abstract

Circadian rhythm (CR) is an important regulator of numerous basic functions of the living organisms such as carbon metabolism, gene expression and regulation, growth and reproduction. It is widely accepted, and several research activities prove its implication on health and disease especially in humans and plants including microbes associated with it. CR is reported to regulate circadian clock which is subjected to extensive natural variation during day and night, light intensity, availability of nutrients, stress and other factors. CR varies within and between species; this underlies the importance of understanding the phenomenon at the individual level to develop disease management strategies or production of microbial formulations used for growth promotion. In plants, rhizosphere microorganisms extensively depend on the root exudates, and its composition is reported to alter with CR in response to external stimuli including global warming and pollution. These microbes play an important role in plant growth and its environmental fitness and hence the concept of plant growth-promoting rhizobacteria (PGPR) came to existence. However, even today circadian clock regulating interaction of PGPR with plants is not extensively studied, and hence most of the time, microbes developed in the laboratory fail to perform in the field level. The world is awaiting another green revolution to feed the growing population with bitter experience of the previous revolution. It is the right time to understand the circadian clock at the species level and to develop suitable formulations to exploit the beneficial aspect of plant-microbe interaction to achieve high yield in the agricultural fields as a part of the sustainable agriculture. Understanding the CR in plant-pathogen interaction will also help to develop suitable treatment strategies to overcome the yield loss due to infection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott L, Murphy D (2003) Soil biology fertility: a key to sustainable land use in agriculture. Kluwer Academic, Dordrecht, pp 187–203

    Google Scholar 

  • Adeola AJ, Apapa AN, Adeyemo AI, Alaye SA, Ogunjobi JA (2014) Seasonal variation in plants consumption pattern by foraging Olive baboons (Papio anubis. Lesson, 1827) inside Kainji lake national park, Nigeria. J Appl Sci Environ Manage 18:481–484

    Google Scholar 

  • Barber DA, Martin JK (1976) The release of organic substances by cereal roots into soil. New Phytol 76:69–80

    Article  CAS  Google Scholar 

  • Baudoin E, Benizri E, Guckert AV (2002) Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Article  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Blasing OE, Gibon Y, Gunther M, Hohne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible WR, Stitt M (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 17:3257–3281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bressan M, Roncato MA, Bellvert F, Comte G, Haichar EZF, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. Int Soc Microb Ecol J 3:1243–1257

    CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Van Themaat EV, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Bunning E (1931) Untersuchungen uber die autonomen tagesperiodischen Bewungen der Primarblatter von Phaseolus multiflorus. Jahrb Wiss Bot 75:439–480

    Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community response to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Cieslinski G, van Rees KCJ, Huang PM (1997) Low molecular weight organic acids released from roots of durum wheat and flax into sterile nutrient solutions. J Plant Nutr 20:753–764

    Article  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Kaplan H, Sessitsch A, Nowak J, Ait Barka E, Clément C (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010a) Colonization of plant growth-promoting bacteria in the rhizo- and endosphere of plants: importance, mechanisms involved and future prospects. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Compant S, Marcel GA, Heijden VD, Sessitsch A (2010b) Climate change effects on beneficial plant-microorganisms interaction. FEMS Microbiol Ecol 66:197–214

    Google Scholar 

  • Daniel X, Sugano S, Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci 101:3293–3297

    Article  CAS  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hiberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Dowson-Day MJ, Millar AJ (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J 17:63–71

    Article  CAS  PubMed  Google Scholar 

  • Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679

    Article  Google Scholar 

  • Drigo B, Kowalchuk GA, Knapp BA, Pijl AS, Boschker HT, Veen JA (2013) Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob Chang Biol 19:621–636

    Article  PubMed  Google Scholar 

  • Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field grown genetically modified Canola (Brassica napus). Appl Environ Microbiol 69:7310–7318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290

    Article  CAS  PubMed  Google Scholar 

  • Engelmann W, Johnsson A (1998) Rhythms in organ movement. In: Lumsden PJ, Millar AJ (eds) Biological rhythms and photoperiodism in plants. BIOS Scientific, Oxford, pp 35–50

    Google Scholar 

  • Fejes E, Nagy F (1998) Molecular analysis of circadian clock regulated gene expression in plants: features of the ‘output’ pathways. In: Lumsden PJ, Millar AJ (eds) Biological rhythms and photoperiodism in plants. BIOS Scientific, Oxford, pp 99–118

    Google Scholar 

  • Finlayson SA, Lee IJ, Mullet JE, Morgan PW (1999) The mechanism of rhythmic ethylene production in sorghum. The role of phytochrome B and simulated shading. Plant Physiol 119:1083–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): Isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Foster KR, Morgan PW (1995) Genetic regulation of development in Sorghum bicolor (IX. The ma3 R allele disrupts diurnal control of gibberellin biosynthesis). Plant Physiol 108:337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler SG, Cook D, Tomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2 and 3 is gated by the circadian clock. Plant Physiol 137:961–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes NCH, Heuer H, Schonfeld J, Costa R, Hagler-Mendoca L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studies by temperature gradient gel electrophoresis. Plant Soil 233:167–180

    Article  Google Scholar 

  • Gomez LA, Simon E (1995) Circadian rhythm of Robinia pseudoacacia leaflets movements: role of calcium and phytochrome. Photochem Photobiol 61:210–215

    Article  CAS  Google Scholar 

  • Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci 107:9458–9463

    Article  CAS  PubMed  Google Scholar 

  • Grayston SJ, Griffith GS, Mawdsley JL, Campbell CD, Bardgett RD (2001) Accounting for variability in soil microbial communities for temperate upland grassland ecosystems. Soil Biol Biochem 33:533–551

    Article  CAS  Google Scholar 

  • Green RM, Tingay S, Wang ZY, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenham K, McClung CR (2015) Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet 16:598–610

    Article  CAS  PubMed  Google Scholar 

  • Guadagno CR, Ewers BE, Weinig C (2018) Circadian rhythms and redox state in plants. Front Plant Sci 9:247–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS, Tanurdzic M, DeanA NDC, McClung CR, Coruzzi GM (2008) Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci 105:4939–4944

    Article  CAS  PubMed  Google Scholar 

  • Haase S, Philippot L, Neumann G, Marhan S, Kandeler E (2008) Local response of bacterial densities and enzyme activities to elevated atmospheric CO2 and different N supply in the rhizosphere of Phaseolus vulgaris L. Soil Biol Biochem 40:1225–1234

    Article  CAS  Google Scholar 

  • Halberg F, Halberg E, Barnum CP, Bittner JJ (1959) Physiologic 24-hour periodicity in human beings and mice, the lighting regimen and daily routine. In: Withrow RB (ed) Photoperiodism and related phenomenon in plants and animals, vol 55. Education Publishing, Washington, DC, pp 803–878

    Google Scholar 

  • Halberg F, Carandente F, Cornelissen G, Katinas GS (1977) Glossary of chronobiology. For Chron 4:1–189

    Google Scholar 

  • Hallmann J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant–pathogen associations. CABI Publishing, Wallingford, pp 87–119

    Chapter  Google Scholar 

  • Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357–377

    Article  CAS  PubMed  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA, Zhu T, Wang X (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    Article  CAS  PubMed  Google Scholar 

  • Hennessey TL, Field CB (1991) Oscillations in carbon assimilation and stomatal conductance under constant condition. Plant Physiol 96:831–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillman WS (1956) Injury of tomato plants by continuous light and unfavorable photoperiodic cycles. Am J Bot 43:89–96

    Article  Google Scholar 

  • Hubbard CJ, Brock MT, Dipen LTAV, Maignien L, Ewers BE, Weining C (2017) The plant circadian clock influences rhizosphere community structure. Int Soc Microb Ecol J 12:400–410

    Google Scholar 

  • Igiehon NO, Babalola OO (2018) Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. Int J Environ Res Public Health 15:576–610

    Article  CAS  Google Scholar 

  • IPCC Climate Change Reports (2007) Impacts, adaptations and vulnerability. Cambridge University Press, Cambridge, pp 79–89

    Google Scholar 

  • Jarillo JA, Capel J, Cashmore AR (2003) Physiological and molecular characteristics of plant circadian clocks. In: Sehgal A (ed) Molecular biology of circadian rhythms. Wiley, Hoboken, NJ, pp 185–209

    Google Scholar 

  • Johnsson A (2007) Oscillations in plant transpiration. In: Mancuso S, Shabala S (eds) Rhythms in plants: phenomenology, mechanisms and adaptive significance. Springer, Berlin, pp 225–230

    Google Scholar 

  • Jones TL, Ort DR (1997) Circadian regulation of sucrose phosphate synthase activity in tomato by protein phosphatase activity. Plant Physiol 113:1167–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouve L, Greppin H, Agosti RD (1998) Arabidopsis thaliana floral stem elongation: evidence for an endogenous circadian rhythm. Plant Physiol Biochem 36:469–472

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhinkov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars and L-tryptophan in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 19:250–256

    Article  CAS  PubMed  Google Scholar 

  • Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S, Tscherko D (2006) Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biol Biochem 38:2448–2460

    Article  CAS  Google Scholar 

  • Kellmann JW, Hoffrogge R, Piechulla B (1999) Transcriptional regulation of oscillating steady-state Lhc mRNA levels: Characterization of two Lhca promoter fragments in transgenic tobacco plants. Biol Rhythm Res 30:264–271

    Article  CAS  Google Scholar 

  • Kim HY, Cote GG, Crain RC (1993) Potassium channels in Samanea saman protoplasts controlled by phytochrome and the biological clock. Science 260:960–962

    Article  CAS  PubMed  Google Scholar 

  • Kloppstech K (1985) Diurnal and circadian rhythmicity in the expression of light induced nuclear messenger RNAs. Plant 165:502–506

    Article  CAS  Google Scholar 

  • Knight H, Thomson AJW, McWatters HG (2008) Sensitive to freezing integrates cellular and environmental inputs to the plant circadian clock. Plant Physiol 148:293–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolling K, Thalmann M, Muller A, Jenny C, Zeeman SC (2015) Carbon partitioning in Arabidopsis thaliana is a dynamic process controlled by the plant metabolic status and its circadian clock. Cell Environ 38:1965–1979

    Article  CAS  Google Scholar 

  • Konmonth-Schultz HA, Golembeski GS, Imaizumi T (2013) Circadian clock regulated physiological outputs: dynamic responses in nature. Semin Cell Dev Biol 24:407–413

    Article  Google Scholar 

  • Landry LG, Chappel CCS, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leone V, Gibbons SM, Martinez K, Hutchinson AL, Huang EY, Cham CM, Pierre JF, Heneghan AF, Nadimpalli HN, Zale E, Wang Y, Huang Y, Theriault B, Dinner AR, Musch MW, Kudsk KA, Prendergast BJ, Gilbert JA, Chang EB (2015) Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17:681–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Bushman FD, FitzGerald GA (2015) Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci 112:10479–10484

    Article  CAS  PubMed  Google Scholar 

  • Linnaeus C (1770) Systema natvrae oer regna tria natvrae, secvndvm classes, ordines, genera, species cvm characteribvs, et differentiis. Tomvs III, pp 1–236

    Google Scholar 

  • Liu Z, Taub CC, McClung CR (1996) Identification of an Arabidopsis Rubisco Activase (RCA) minimal promoter regulated by phytochrome and the circadian clock. Plant Physiol 112:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhu M, Hatfield JL (2013) Dynamics of plant root growth under increased atmospheric carbon dioxide. Agron J 105:657–669

    Article  CAS  Google Scholar 

  • Mairan D (1729) Observation botanique. Hist Acad Roy Sci:35–36

    Google Scholar 

  • McClung CR, Kay SA (1994) Circadian rhythms in Arabidopsis thaliana. In: Meyweowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 615–637

    Google Scholar 

  • Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J (1999) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J Plant Nutr Soil Sci 162:373–383

    Article  CAS  Google Scholar 

  • Michael TP, McClung CR (2003) Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis thaliana. Plant Physiol 132:629–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael TP, Salome PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302:1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin and inoculation with Sinorhizobium meliloti L33. Microb Ecol 40:43–56

    Article  CAS  PubMed  Google Scholar 

  • Millar AJ, Kay SA (1991) Circadian control of cab gene transcription and mRNA accumulation in Arabidopsis. Plant Cell 3:541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millar AJ, Short SR, Chua NH, Kay SA (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4:1075–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller LM, Korff MV, Davis SJ (2014) Connections between circadian clocks and carbon metabolism reveal species-specific effects on growth control. J Exp Bot 65:2915–2923

    Article  PubMed  Google Scholar 

  • Nagy F, Kay SA, Chua N-H (1988) A circadian clock regulates transcription of the wheat Cab-1 gene. Genes Dev 2:376–382

    Article  CAS  Google Scholar 

  • Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5:75–80

    Article  CAS  PubMed  Google Scholar 

  • Piechulla B (1999) Circadian expression of the light harvesting complex protein genes in plants. Chronobiol Int 16:115–128

    Article  CAS  PubMed  Google Scholar 

  • Pilgrim ML, Caspar T, Quail PH, McClung CR (1993) Circadian and light regulated expression of nitrate reductase in Arabidopsis. Plant Mol Biol 23:349–364

    Article  CAS  PubMed  Google Scholar 

  • Pillay VK, Nowak J (1997) Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43:54–361

    Article  Google Scholar 

  • Raja P, Uma S, Gopal H, Govindarajan K (2006) Impact of bioinoculants consortium on rice root exudates, biological nitrogen fixation and plant growth. J Biol Sci 6(5):815–823

    Article  Google Scholar 

  • Rangaswami G (1988) Soil plant microbe interrelationships. Indian Phytopathol 41:165–172

    Google Scholar 

  • Raschke K (1979) Movements of stomata. In: Haupt W, Feinleib ME (eds) Physiology of movements, encyclopedia of plant physiology, vol 7. Springer, Berlin, pp 383–441

    Google Scholar 

  • Roden LC, Ingle RA (2009) Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant pathogen interactions. Plant Cell 21:2546–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samach A, Coupland G (2000) Time measurement and the control of flowering in plants. Bioassays 22:38–47

    Article  CAS  Google Scholar 

  • Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian regulated genes in Arabidopsis. Plant Cell 13:113–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling G, Gransee A, Deubel A, Lezovic G, Ruppel S (1998) Phosphorus availability, root exudates and microbial activity in the rhizosphere. Ucits Pflanzenernahrung Boden 161:465–478

    Article  CAS  Google Scholar 

  • Seo PJ, Mas P (2015) Stressing the role of the plant circadian clock. Trends Plant Sci 20:230–237

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Bhattacharyya PN, Rajkhowa DJ, Jha DK (2014) Impact of global climate change on beneficial plant-microbe association. Annals Biol Res 5:36–37

    Google Scholar 

  • Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR (2011) Effect of warming and drought on grassland microbial communities. Int Soc Microb Ecol J 5:1692–1700

    CAS  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2010) Similarities in the circadian clock and photoperiodism in plants. Curr Opin Plant Biol 13:594–603

    Article  PubMed  PubMed Central  Google Scholar 

  • Staiger D, Apel K (1999) Circadian clock-regulated expression of an RNA binding protein in Arabidopsis: characterization of a minimal promoter element. Mol Gen Genet 261:811–819

    Article  CAS  PubMed  Google Scholar 

  • Staiger D, Apel K, Trepp G (1999) The Atger3 promoter confers circadian clock-regulated transcription with peak expression at the beginning of night. Plant Mol Biol 40:873–882

    Article  CAS  PubMed  Google Scholar 

  • Staley C, Ferrieri AP, Tfaily MM, Cui Y, Chu RK, Wang P, Shaw JB, Ansong CK, Brewer H, Norbeck AD, Markillie M, Amaral FD, Tuleski T, Pellizzaro T, Agtuca B, Ferrieri R, Tringe SG, Pasa-Tolic L, Stacey G, Sadowsky MJ (2017) Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism. Microbiome 5:65–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevbak K, Scherber C, Gladbach DJ, Beier C, Mikkelsen TN, Christensen S (2012) Interactions between above and below ground organisms modified in climate change experiments. Nat Clim Chang 2:805–888

    Article  CAS  Google Scholar 

  • Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771

    Article  CAS  PubMed  Google Scholar 

  • Sulpice R, Flis A, Ivakov AA, Apelt F, Krohan N, Encke B et al (2014) Arabidopsis coordinates the diurnal regulation of carbon allocation and growth across a wide range of photoperiods. Mol Plant 7:137–155

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology. Sinauer Associates, Sunderland, MA, pp 543–590

    Google Scholar 

  • Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abrmson L, Katz MN, Korem T, Zmora N, Kuperman Y, Biton I, Gilad S, Harmelin A, Shapiro H, Halpern Z, Seqal E, Elinay E (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:517–529

    Article  CAS  Google Scholar 

  • Vancura V (1964) Root exudates of plants. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant Soil 21:231–234

    Article  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanovsky MJ, Kay SA (2001) Signaling networks in the plant circadian system. Curr Opin Plant Biol 4:429–435

    Article  CAS  PubMed  Google Scholar 

  • Yerushalmi S, Yakir E, Green RM (2011) Circadian clocks and adaptation in Arabidopsis. Mol Ecol 20:1155–1165

    Article  PubMed  Google Scholar 

  • Zarrinpar A, Chaix A, Yooseph S, Panda S (2014) Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 20:1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong HH, McClung CR (1996) The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol Gen Genet 251:196–203

    CAS  PubMed  Google Scholar 

  • Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maddur Puttaswamy, R. (2019). Circadian Rhythms in Plant-Microbe Interaction: For Better Performance of Bioinoculants in the Agricultural Fields. In: Giri, B., Prasad, R., Wu, QS., Varma, A. (eds) Biofertilizers for Sustainable Agriculture and Environment . Soil Biology, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_14

Download citation

Publish with us

Policies and ethics