Skip to main content

A Computational Hypothesis on How Serotonin Regulates Catecholamines in the Pathogenesis of Depressive Apathy

  • Chapter
  • First Online:
Multiscale Models of Brain Disorders

Abstract

Despite increasing literature supports a strong involvement of dopamine, noradrenaline and serotonin dysfunctions in the pathogenesis of most depressive disorders, the (causal) relationship between those monoamines impairments and the resulting disorder features is still not clear. We propose a hypothesis based on a computational model for which some depressive features may be produced by pathologically low levels of serotonin, which in turn causes a downregulation of catecholamine release. The simulations run with the model demonstrate that this process may be critical to the genesis of apathy, which is one of the most frequent and invalidating features of depressive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behrens TE, Woolrich MW, Walton ME, Rushworth MF (2007) Learning the value of information in an uncertain world. Nat Neurosci 10(9):1214–1221

    CAS  PubMed  Google Scholar 

  2. Carlssen A (1976) The contribution of drug research to investigating the nature of endogenous depression. Pharmacopsychiatry 9(01):2–10

    Google Scholar 

  3. Chamberlain SR, Robbins TW (2013) Noradrenergic modulation of cognition: therapeutic implications. J Psychopharmacol 27(8):694–718

    PubMed  Google Scholar 

  4. Chang CH, Grace AA (2014) Amygdala-ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biol Psychiatry 76(3):223–230

    CAS  PubMed  Google Scholar 

  5. Cools R, Nakamura K, Daw ND (2011) Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology 36(1):98–113

    CAS  PubMed  Google Scholar 

  6. Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113(504):1237–1264

    CAS  PubMed  Google Scholar 

  7. Cowen PJ, Browning M (2015) What has serotonin to do with depression? World Psychiatry 14(2):158–160

    PubMed  PubMed Central  Google Scholar 

  8. Daw ND, Kakade S, Dayan P (2002) Opponent interactions between serotonin and dopamine. Neural Netw 15(4):603–616

    Google Scholar 

  9. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1):279–306

    PubMed  Google Scholar 

  10. Fiore VG, Mannella F, Mirolli M, Latagliata EC, Valzania A, Cabib S, Dolan RJ, Puglisi-Allegra S, Baldassarre G (2015) Corticolimbic catecholamines in stress: a computational model of the appraisal of controllability. Brain Struct Funct 220:1339–1353

    CAS  PubMed  Google Scholar 

  11. Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306(5703):1940–1943

    CAS  PubMed  Google Scholar 

  12. Grace AA (2016) Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17(8):524

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Haas BW, Omura K, Constable RT, Canli T (2007) Emotional conflict and neuroticism: personality-dependent activation in the amygdala and subgenual anterior cingulate. Behav Neurosci 121(2):249

    PubMed  Google Scholar 

  14. Harmer CJ, Goodwin GM, Cowen PJ (2009) Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. Br J Psychiatry 195(2):102–108

    PubMed  Google Scholar 

  15. Kolling N, Wittmann MK, Behrens TEJ, Boorman ED, Mars RB, Rushworth MFS (2016) Value, search, persistence and model updating in anterior cingulate cortex. Nat Neurosci 19(10):1280–1285

    CAS  PubMed  Google Scholar 

  16. Maletic V, Eramo A, Gwin K, Offord SJ, Duffy RA (2017) The role of norepinephrine and its α-adrenergic receptors in the pathophysiology and treatment of major depressive disorder and schizophrenia: a systematic review. Front Psych 8:42

    Google Scholar 

  17. Margulies DS, Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2007) Mapping the functional connectivity of anterior cingulate cortex. NeuroImage 37(2):579–588

    PubMed  Google Scholar 

  18. Meyniel F, Goodwin GM, Deakin JW, Klinge C, MacFadyen C, Milligan H et al (2016) A specific role for serotonin in overcoming effort cost. elife 5:e17282

    PubMed  PubMed Central  Google Scholar 

  19. Pascucci T, Ventura R, Latagliata EC, Cabib S, Puglisi-Allegra S (2007) The medial prefrontal cortex determines the accumbens dopamine response to stress through the opposing influences of norepinephrine and dopamine. Cereb Cortex 17:2796–2804

    PubMed  Google Scholar 

  20. Rajkowska G (2000) Histopathology of the prefrontal cortex in major depression: what does it tell us about dysfunctional monoaminergic circuits? Prog Brain Res 126:397–412

    CAS  PubMed  Google Scholar 

  21. Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12(S1):2–19

    PubMed  Google Scholar 

  22. Ruhé HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12:331–359

    PubMed  Google Scholar 

  23. Rushworth MF, Behrens TE (2008) Choice, uncertainty and value in prefrontal and cingulate cortex. Nat Neurosci 11(4):389–397

    CAS  PubMed  Google Scholar 

  24. Salamone JD, Cousins MS, Bucher S (1994) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65(2):221–229

    CAS  PubMed  Google Scholar 

  25. Saltiel PF, Silvershein DI (2015) Major depressive disorder: mechanism-based prescribing for personalized medicine. Neuropsychiatr Dis Treat 11:875

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schweighofer N, Doya K (2003) Meta-learning in reinforcement learning. Neural Netw 16(1):5–9

    PubMed  Google Scholar 

  27. Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatr 122(5):509–522

    CAS  PubMed  Google Scholar 

  28. Sharp T, Cowen PJ (2011) 5-HT and depression: is the glass half-full? Curr Opin Pharmacol 11(1):45–51

    CAS  PubMed  Google Scholar 

  29. Shenhav A, Botvinick MM, Cohen JD (2013) The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79(2):217–240

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Silvetti M, Alexander W, Verguts T, Brown JW (2014) From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex. Neurosci Biobehav Rev 46:44–57

    PubMed  Google Scholar 

  31. Silvetti M, Vassena E, Abrahamse E, Verguts T (2017) Dorsal anterior cingulate-midbrain ensemble as a reinforcement meta-learner. bioRxiv:130195

    Google Scholar 

  32. Smith KA, Fairburn CG, Cowen PJ (1997) Relapse of depression after rapid depletion of tryptophan. Lancet 349(9056):915–919

    CAS  PubMed  Google Scholar 

  33. Valenti O, Gill KM, Grace AA (2012) Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: response alteration by stress pre-exposure. Eur J Neurosci 35(8):1312–1321

    PubMed  PubMed Central  Google Scholar 

  34. Varazzani C, San-Galli A, Gilardeau S, Bouret S (2015) Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys. J Neurosci 35(20):7866–7877

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Verguts T, Vassena E, Silvetti M (2015) Adaptive effort investment in cognitive and physical tasks: a neurocomputational model. Front Behav Neurosci 9:57

    PubMed  PubMed Central  Google Scholar 

  36. Walton ME, Groves J, Jennings KA, Croxson PL, Sharp T, Rushworth MF, Bannerman DM (2009) Comparing the role of the anterior cingulate cortex and 6-hydroxydopamine nucleus accumbens lesions on operant effort-based decision making. Eur J Neurosci 29(8):1678–1691

    PubMed  PubMed Central  Google Scholar 

  37. Yohn CN, Gergues MM, Samuels BA (2017) The role of 5-HT receptors in depression. Mol Brain 10(1):28

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Caligiore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silvetti, M., Baldassarre, G., Caligiore, D. (2019). A Computational Hypothesis on How Serotonin Regulates Catecholamines in the Pathogenesis of Depressive Apathy. In: Cutsuridis, V. (eds) Multiscale Models of Brain Disorders. Springer Series in Cognitive and Neural Systems, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-18830-6_12

Download citation

Publish with us

Policies and ethics