The Wind and the New Science

  • Giovanni SolariEmail author
Part of the Springer Tracts in Civil Engineering book series (SPRTRCIENG)


This chapter starts dealing with the transition from speculation to experience that took place in the two centuries going from the birth of Leonardo da Vinci to the death of Galileo Galilei, showing how the wind culture received stimuli from the evolution pervading the various knowledge sectors, starting with the ones connected to the appearance and diffusion of weather instruments and measurements. Similarly, the revitalised wind culture drew essential concepts and principles from the basic disciplines that arose and developed from the sixteenth century onward, first mathematics and the related tools capable of automatically performing complex and repetitive computations, probability theory, destined to become an essential tool for wind engineering, mechanics, in its broadest meaning, fluid dynamics, that mostly provided direct and innovative contributions to the wind culture, thermodynamics, essential to interpret the Earth atmosphere as a giant thermal machine and as a key issue for the development of the steam machine, which bounded its progress to the measure and knowledge of wind, the gas kinetic theory and an essential reference for the first theories about turbulence. The chapter ends with a synthesis of the main aspects characterising the origins and the first developments of structural mechanics and dynamics, two matters that became increasingly vital to protect human works from wind actions.


  1. 1.
    Pitoni R (1913) Storia della fisica. Società Tipografico-Editrice Nazionale, TurinzbMATHGoogle Scholar
  2. 2.
    Dampier WC (1929) A history of science and its relations with philosophy and religion. Cambridge University Press, LondonzbMATHGoogle Scholar
  3. 3.
    Brown S (1961) World of the wind. Bobbs-Merrill, Indianapolis, New YorkGoogle Scholar
  4. 4.
    Palmieri S (2000) Il mistero del tempo e del clima: La storia, lo sviluppo, il futuro. CUEN, NaplesGoogle Scholar
  5. 5.
    Shaw N (1926) Manual of meteorology. Volume I: Meteorology in history. Cambridge University PressGoogle Scholar
  6. 6.
    Wolf A (1935) A history of science, technology and philosophy in the 16th & 17th centuries. George Allen & Unwin, LondonGoogle Scholar
  7. 7.
    Benvenuto E (1981) La scienza delle costruzioni e il suo sviluppo storico. Sansoni, FlorenceGoogle Scholar
  8. 8.
    Whipple ABC (1982) Storm. Time-Life Books, AmsterdamGoogle Scholar
  9. 9.
    Sorbjan Z (1996) Hands-on meteorology. American Meteorology SocietyGoogle Scholar
  10. 10.
    Vittori O (1992) L’atmosfera del pianeta terra: Struttura e fenomeni. Zanichelli, BolognaGoogle Scholar
  11. 11.
    Aynsley RM, Melbourne W, Vickery BJ (1977) Architectural aerodynamics. Applied Science Publishers, LondonGoogle Scholar
  12. 12.
    Hardy R, Wright P, Gribbin J, Kington J (1982) The weather book. Harrow HouseGoogle Scholar
  13. 13.
    Hambly R (2001) The invention of clouds. Picador, New YorkGoogle Scholar
  14. 14.
    Rouse H, Ince S (1954–1956) History of hydraulics. Series of Supplements to La Houille Blanche. Iowa Institute of Hydraulic Research, State University of IowaGoogle Scholar
  15. 15.
    Bender CB (1882) The design of structures to resist wind-pressure. Proc Inst Civil Eng, LXIX, pp 80–119Google Scholar
  16. 16.
    Baynes CJ (1974) The statistic of strong winds for engineering applications. Ph. D. Thesis, The University of Western Ontario, London, Ontario, CanadaGoogle Scholar
  17. 17.
    Robinson JTR (1850) Description of an improved anemometer for registering the direction of the wind and the space which it traverses in given intervals of time. Trans R Irish Acad 22:155–178Google Scholar
  18. 18.
    Handbook of meteorological instruments. Part I: Instruments for surface observation. Meteorological Office, Her Majesty’s Stationery Office, London (1956)Google Scholar
  19. 19.
    Goldstine HH (1972) The computer from Pascal to von Neumann. Princeton University PressGoogle Scholar
  20. 20.
    Colombo U, Lanzavecchia G (ed) (2002) La nuova scienza. Vol. 3: La società dell’informazione. Libri Scheiwiller, MilanGoogle Scholar
  21. 21.
    Zientara M (1981) The history of computing: a biographical portrait of the visionaries who shaped the destiny of the computer industry. CW Communications, Redditch Worcs, UKGoogle Scholar
  22. 22.
    Todhunter I (1865) A history of the mathematical theory of probability. Cambridge University PressGoogle Scholar
  23. 23.
    Maistrov LE (1974) Probability theory. A historical sketch. Academic Press, New YorkzbMATHGoogle Scholar
  24. 24.
    Kottegoda NT, Rosso R (1997) Statistics, probability, and reliability for civil and environmental engineers. McGraw-Hill, New YorkGoogle Scholar
  25. 25.
    Truesdell C (1968) Essays in the history of mechanics. Springer, BerlinCrossRefGoogle Scholar
  26. 26.
    Truesdell C (1953) Notes on the history of the general equations of hydrodynamics. Am Math Mon LX:445–458MathSciNetCrossRefGoogle Scholar
  27. 27.
    von Karman T (1954) Aerodynamics. Cornell University Press, IthacazbMATHGoogle Scholar
  28. 28.
    Proust J (1985) Recueil de planches sur les sciences, les arts libéraux et les arts mécaniques. Hachette, ParisGoogle Scholar
  29. 29.
    Anderson JD (1998) A history of aerodynamics. Cambridge University PressGoogle Scholar
  30. 30.
    Navier CLMH (1827) Mémoire sur les lois du mouvement des fluides. Mémoires l’Acad Sci 6:389–416Google Scholar
  31. 31.
    Poisson SD (1831) Mémoire sur les équations générales de l’équilibre et du mouvement des corps solides élastiques et des fluides. J l’École Polytech 13:139–186Google Scholar
  32. 32.
    De Saint-Venant B (1843) Note à joindre au mémoire sur la dynamique des fluides. C R Séances Acad Sci 17:1240–1244Google Scholar
  33. 33.
    Stokes GG (1845) On the theories of the internal friction of fluids in motion. Trans Camb Philos Soc 8:287–305Google Scholar
  34. 34.
    Buresti G (2015) A note on Stokes hypothesis. Acta Mech 226:3555–3559MathSciNetCrossRefGoogle Scholar
  35. 35.
    Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Philos Soc 9: 8–106Google Scholar
  36. 36.
    Helmholtz H (1858) Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J Angew Math 55:25–55MathSciNetCrossRefGoogle Scholar
  37. 37.
    Helmholtz H (1868) Über discontinuirliche Flüssigkeitsbewegungen. Monatsberichte der Königlichen Akademie der Wissenschaften zu Berlin, pp 215–228Google Scholar
  38. 38.
    Kirchhoff G (1869) Zur Theorie freier Flüssigkeitsstrahlen. J die reine Angew Math 70:289–298MathSciNetCrossRefGoogle Scholar
  39. 39.
    Rayleigh Lord (1876) On the resistance of fluids. Philos Mag Ser 5: 430–441Google Scholar
  40. 40.
    Rayleigh Lord (1878) On the irregular flight of a tennis-ball. Messenger Math 7:14–16Google Scholar
  41. 41.
    Boussinesq J (1877) Théorie de l’écoulement tourbillant. Mém présentés par divers savants à l’Acad des Sci 23:46–50Google Scholar
  42. 42.
    Parolini G, Del Monaco A, Fontana DM (1983) Fondamenti di fisica tecnica. UTET, TurinGoogle Scholar
  43. 43.
    Calì M, Gregorio P (1996) Termodinamica. Progetto Leonardo, BolognaGoogle Scholar
  44. 44.
    Leicester HM (1956) The historical background of chemistry. Wiley, New YorkCrossRefGoogle Scholar
  45. 45.
    Singer C, Holmyard EJ, Hall AR, Williams TI (eds) (1956) A history of technology. Oxford University Press, NewYorkGoogle Scholar
  46. 46.
    Klemm F (1954) Technik, eine geschichte ihrer probleme. Karl Alber, Freiburg - MunchenGoogle Scholar
  47. 47.
    Truesdell C (1980) The tragicomical history of thermodynamics 1822–1854. Springer, New YorkCrossRefGoogle Scholar
  48. 48.
    Cardwell DSL (1971) From Watt to Clausius. Heinemann, LondonGoogle Scholar
  49. 49.
    Truesdell C (1984) Rational thermodynamics. Springer, New YorkCrossRefGoogle Scholar
  50. 50.
    Hopkins HJ (1970) A span of bridges. David & Charles, Newton Abbot, UKGoogle Scholar
  51. 51.
    Lindsay RB (1966) The story of acoustics. J Acoust Soc Am 39:629–644CrossRefGoogle Scholar
  52. 52.
    Rao SS (2005) Mechanical vibrations. Pearson, Prentice Hall, SingaporeGoogle Scholar
  53. 53.
    Cannon JT, Dostrovsky S (1981) The evolution of dynamics: vibration theory from 1687 to 1742. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil, Chemical and Environmental Engineering, Polytechnic SchoolUniversity of GenoaGenoaItaly

Personalised recommendations