Skip to main content

Multiscale Quantum Mechanics/Electromagnetics Method for the Simulation of Photovoltaic Devices

  • Chapter
  • First Online:
Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 284))

Abstract

We describe a newly developed multiscale computational method, combining quantum mechanics with classical electrodynamics for simulations of photovoltaic devices. In this quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where charge excitation and migration processes take place are treated quantum mechanically, while the surroundings are described by Maxwell’s equations coupled with a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. In this chapter, we first demonstrate the method by studying the plasmonic scattering and light trapping effects in silicon nanowire array solar cells. Our results show that there exists an optimal nanowire number density in terms of optical confinement. The method is then applied to study a tandem solar cell where the subcells are treated quantum mechanically. The QM/EM simulation results demonstrate that a significant enhancement of open-circuit voltage is achieved by using the tandem architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Ginley, M.A. Green, R. Collins, Solar energy conversion toward 1 terawatt. MRS Bull. 33(4), 355–364 (2008)

    Article  CAS  Google Scholar 

  2. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012)

    Article  CAS  Google Scholar 

  3. A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352(6283), 307 (2016)

    Article  CAS  Google Scholar 

  4. D. Liu, D. Yang, Y. Gao, J. Ma, R. Long, C. Wang, Y. Xiong, Flexible near-infrared photovoltaic devices based on plasmonic hot-electron injection into silicon nanowire arrays. Angew. Chem. Int. Ed. 55, 4577–4581 (2016)

    Article  CAS  Google Scholar 

  5. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M.H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H.Q. Xu, L. Samuelson, K. Deppert, M.T. Borgström, InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science, 339, 1057–1060 (2013)

    Google Scholar 

  6. P. Krogstrup, H.I. Jørgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, A.F.i. Morral, Single-nanowire solar cells beyond the shockley–queisser limit. Nat. Photonics. 7, 306–310 (2013)

    Google Scholar 

  7. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  CAS  Google Scholar 

  8. E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010)

    Article  CAS  Google Scholar 

  9. W. Wang, S. Wu, K. Reinhardt, Y. Lu, S. Chen, Broadband light absorption enhancement in thin-film silicon solar cells. Nano Lett. 10, 2012–2018 (2010)

    Article  CAS  Google Scholar 

  10. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Enhanced absorption and carrier collection in si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010)

    Google Scholar 

  11. A. Sundaramurthy, K.B. Crozier, G.S. Kino, D.P. Fromm, P.J. Schuck, W.E. Moerner, Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip au nanotriangles. Phys. Rev. B 72, 165409 (2005)

    Article  Google Scholar 

  12. C.-H. Chou, F.-C. Chen, Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale 6, 8444–8458 (2014)

    Article  CAS  Google Scholar 

  13. D. Derkacs, S.H. Lim, P. Matheu, W. Mar, E.T. Yu, Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 89, 093103 (2006)

    Article  Google Scholar 

  14. B.P. Rand, P. Peumans, S.R. Forrest, Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519–7526 (2004)

    Article  CAS  Google Scholar 

  15. S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, Plasmon enhanced performance of organic solar cells using electrodeposited ag nanoparticles. Appl. Phys. Lett. 93, 073307 (2008)

    Article  Google Scholar 

  16. N.C. Lindquist, W.A. Luhman, S.-H. Oh, R.J. Holmes, Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl. Phys. Lett. 93, 123308 (2008)

    Article  Google Scholar 

  17. M.D. Brown, T. Suteewong, R.S.S. Kumar, V. D’Innocenzo, A. Petrozza, M.M. Lee, U. Wiesner, H.J. Snaith, Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett. 11, 438–445 (2011)

    Article  CAS  Google Scholar 

  18. S.D. Standridge, G.C. Schatz, J.T. Hupp, Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 8407–8409 (2009)

    Article  CAS  Google Scholar 

  19. C. Yam, L. Meng, Y. Zhang, G. Chen, A multiscale quantum mechanics/electromagnetics method for device simulations. Chem. Soc. Rev. 44, 1763–1776 (2015)

    Article  CAS  Google Scholar 

  20. J. Zhu, Z. Yu, G.F. Burkhard, C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279–282 (2009)

    Article  Google Scholar 

  21. P. Yang, R. Yan, M. Fardy, Semiconductor nanowire: what’s next? Nano Lett. 10, 1529–1536 (2010)

    Article  CAS  Google Scholar 

  22. B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial junction nanorod solar cells. J. Appl. Phys. 97, 114302 (2005)

    Article  Google Scholar 

  23. L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249–3252 (2007)

    Article  CAS  Google Scholar 

  24. L. Meng, C. Yam, Y. Zhang, R. Wang, G. Chen, Multiscale modeling of plasmon-enhanced power conversion efficiency in nanostructured solar cells. J. Phys. Chem. Lett. 6, 4410–4416 (2015)

    Article  CAS  Google Scholar 

  25. R. Long, O.V. Prezhdo, Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. J. Am. Chem. Soc. 136, 4343–4354 (2014)

    Article  CAS  Google Scholar 

  26. C.F.A. Negre, E.M. Perassi, E.A. Coronado, C.G. Sanchez, Quantum dynamical simulations of local field enhancement in metal nanoparticles. J. Phys.: Condens. Matter, 25, 125304 (2013)

    Google Scholar 

  27. J.N. Munday, H.A. Atwater, Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano. Lett. 11, 2195–2201 (2011)

    Article  CAS  Google Scholar 

  28. L. Meng, Y. Shang, Q. Li, Y. Li, X. Zhan, Z. Shuai, R.G.E. Kimber, A.B. Walker, Dynamic monte carlo simulation for highly efficient polymer blend photovoltaics. J. Phys. Chem. B 114, 36–41 (2010)

    Article  CAS  Google Scholar 

  29. L. Meng, D. Wang, Q. Li, Y. Yi, J.-L. Bredas, Z. Shuai, An improved dynamic monte carlo model coupled with poisson equation to simulate the performance of organic photovoltaic devices. J. Chem. Phys. 134, 124102 (2011)

    Article  Google Scholar 

  30. Y. Shang, Q. Li, L. Meng, D. Wang, Z. Shuai, Device simulation of low-band gap polymer solar cells: influence of electron-hole pair dissociation and decay rates on open-circuit voltage. Appl. Phys. Lett. 97, 143511 (2010)

    Article  Google Scholar 

  31. Y. Shang, Q. Li, L. Meng, D. Wang, Z. Shuai, Computational characterization of organic photovoltaic devices. Theor. Chem. Acc. 129, 291–301 (2011)

    Article  CAS  Google Scholar 

  32. Shuai, Z., Meng, L., Jiang, Y., Theoretical modeling of the optical and electrical processes in organic solar cells. In Progress in High-Efficient Solution Process Organic Photovoltaic Devices, vol 130 (Springer, Berlin, 2015), pp. 101–142

    Google Scholar 

  33. A. Warshel, M. Levitt, Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103, 227–249 (1976)

    Article  CAS  Google Scholar 

  34. K. Lopata, D. Neuhauser, Multiscale maxwell-schrödinger modeling: a split field finite-difference time-domain approach to molecular nanopolaritonics. J. Chem. Phys. 130, 104707 (2009)

    Article  Google Scholar 

  35. H. Chen, J.M. McMahon, M.A. Ratner, G.C. Schatz, Classical electrodynamics coupled to quantum mechanics for calculation of molecular optical properties: a RT-TDDFT/FDTD approach. J. Phys. Chem. C 114, 14384–14392 (2010)

    Article  CAS  Google Scholar 

  36. J. Sun, G. Li, W. Liang, How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation. Phys. Chem. Chem. Phys. 17, 16835–16845 (2015)

    Article  CAS  Google Scholar 

  37. C. Yam, L. Meng, G.H. Chen, Q. Chen, N. Wong, Multi-scale quantum mechanics/electromagnetics simulation for electronic devices. Phys. Chem. Chem. Phys. 13, 14365–14369 (2011)

    Article  CAS  Google Scholar 

  38. L. Meng, C. Yam, S. Koo, Q. Chen, N. Wong, G.H. Chen, Dynamic multiscale quantum mechanics/electromagnetics simulation method. J. Chem. Theory Comput. 8, 1190–1199 (2012)

    Article  CAS  Google Scholar 

  39. L. Meng, Z. Yin, C. Yam, S. Koo, Q. Chen, N. Wong, G. Chen, Frequency-domain multiscale quantum mechanics/electromagnetics simulation method. J. Chem. Phys. 139, 244111 (2013)

    Article  Google Scholar 

  40. Y. Zhang, L. Meng, C. Yam, G. Chen, Quantum-mechanical prediction of nanoscale photovoltaics. J. Phys. Chem. Lett. 5, 1272–1277 (2014)

    Article  CAS  Google Scholar 

  41. L. Meng, Y. Zhang, C. Yam, Multiscale study of plasmonic scattering and light trapping effect in silicon nanowire array solar cells. J. Phys. Chem. Lett. 8, 571–575 (2017)

    Article  CAS  Google Scholar 

  42. D.J. Griggiths, Introduction to Electrodynamics (Prentice-Hall, New Jersey, 1999)

    Google Scholar 

  43. W.C. Chew, M.S. Tong, B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves. Morgan & Claypool (2009)

    Google Scholar 

  44. P. Meuris, W. Schoenmaker, W. Magnus, Strategy for electromagnetic interconnect modeling. IEEE. Trans. Comput.-Aided Design, 20, 753–762 (2001)

    Google Scholar 

  45. A. Sieck, D.P.; Frauenheim, T.; Pederson, M. R.; Jackson, K., Structure and vibrational spectra of low-energy silicon clusters. Phys. Rev. A, 56, 4890–4898 (1997)

    Google Scholar 

  46. Y. Zhang, C. Yam, G. Chen, Dissipative time-dependent quantum transport theory. J. Chem. Phys. 138, 164121 (2013)

    Article  Google Scholar 

  47. W. Lu, J. Xiang, B.P. Timko, Y. Wu, C.M. Lieber, One-dimensional hole gas in germanium/silicon nanowire heterostructures. Proc. Natl. Acad. Sci. U.S.A. 102(29), 10046–10051 (2005)

    Article  CAS  Google Scholar 

  48. J. Zuloaga, E. Prodan, P. Nordlander, Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett. 9(2), 887–891 (2009)

    Article  CAS  Google Scholar 

  49. R. Esteban, A.G. Borisov, P. Nordlander, J. Aizpurua, Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun., 1806 (2012)

    Google Scholar 

  50. H. Duan, A.I. Fernández-Domínguez, M. Bosman, S.A. Maier, J.K.W. Yang, Nanoplasmonics: classical down to the nanometer scale. Nano Lett. 12, 1683–1689 (2012)

    Article  CAS  Google Scholar 

  51. Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4(3), 433–436 (2004)

    Article  CAS  Google Scholar 

  52. X. Li, W.C.H. Choy, H. Lu, W.E.I. Sha, A.H.P. Ho, Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv. Funct. Mater. 23, 2728–2735 (2013)

    Article  CAS  Google Scholar 

  53. G. Klaus, Metal Impurities in Silicon-Device Fabrication (Springer-Verlag, Berlin Heidelberg, Berlin, 2000)

    Google Scholar 

  54. A. Cuevas, M.J. Kerr, C. Samundsett, F. Ferrazza, G. Coletti, Millisecond minority carrier lifetimes in n-type multicrystalline silicon. Appl. Phys. Lett. 81, 4952 (2002)

    Article  CAS  Google Scholar 

  55. J.E. Cotter, J.H. Guo, P.J. Cousins, M.D. Abbott, F.W. Chen, K.C. Fisher, P-type versus n-type silicon wafers: prospects for high-efficiency commercial silicon solar cells. IEEE. Trans. Electron Devices 53(8), 1893–1901 (2006)

    Article  CAS  Google Scholar 

  56. S. Markov, G. Penazzi, Y. Kwok, A. Pecchia, B. Aradi, T. Frauenheim, G. Chen, Permittivity of oxidized ultra-thin silicon films from atomistic simulations. IEEE Electr. Device L. 36, 1076–1078 (2015)

    Article  CAS  Google Scholar 

  57. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)

    Article  CAS  Google Scholar 

  58. G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Design rules for donors in bulk-heterojunction tandem solar cells towards 15% energy-conversion efficiency. Adv. Mater. 20(3), 579–583 (2008)

    Article  CAS  Google Scholar 

  59. Y. Chen, M.-E. Pistol, N. Anttu, Design for strong absorption in a nanowire array tandem solar cell. Sci. Rep. 6, 32349 (2016)

    Article  CAS  Google Scholar 

  60. R. Wang, Y. Zhang, F. Bi, T. Frauenheim, G. Chen, C. Yam, Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes. Nanoscale 8(27), 13168–13173 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChiYung Yam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meng, L., Yam, C. (2021). Multiscale Quantum Mechanics/Electromagnetics Method for the Simulation of Photovoltaic Devices. In: Shankar, S., Muller, R., Dunning, T., Chen, G.H. (eds) Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile. Springer Series in Materials Science, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-18778-1_30

Download citation

Publish with us

Policies and ethics