Skip to main content

Quantum-Based Molecular Dynamics Simulations with Applications to Industrial Problems

  • Chapter
  • First Online:
Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile

Abstract

In this chapter we describe a method that combines three different approaches to achieve practical, large-scale, quantum-based, Born-Oppenheimer molecular dynamics simulations. This particular combination of methods provides a very powerful and unified framework to next-generation quantum molecular dynamics simulations that can be applied to problems of industrial interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Hohenberg, W. Kohn, Inhomgenous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  Google Scholar 

  2. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989)

    Google Scholar 

  3. R. Dreizler, K. Gross, Density-Functional Theory (Springer, Berlin, Heidelberg, 1990)

    Book  Google Scholar 

  4. M. Allen, D. Tildesley, Computer Simulation of Liquids (Oxford Science, London, 1990)

    Google Scholar 

  5. D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd edn. (Academic Press, 2002)

    Google Scholar 

  6. D. Marx, J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry, 2nd edn., ed. by J. Grotendorst (John von Neumann Institute for Computing, Jülich, Germany, 2000)

    Google Scholar 

  7. B. Kirchner, P.J. di Dio, J. Hutter, Real-world predicitions from ab initio molecular dynamics simulations. Top. Curr. Chem. 307, 109 (2012)

    Article  CAS  Google Scholar 

  8. R. Haydock, The recursive solution of the Schrodinger equation. Comput. Phys. Commun. 20, 11 (1980)

    Article  Google Scholar 

  9. W. Yang, Direct calculation of electron-density in density-functional theory. Phys. Rev. Lett. 66, 1438 (1991)

    Article  CAS  Google Scholar 

  10. F. Mauri, G. Galli, R. Car, Orbital formulation for electronic-structure calculations with linear system-size scaling. Phys. Rev. B 47(15), 9973–9976 (1993)

    Article  CAS  Google Scholar 

  11. G. Galli, M. Parrinello, Large scale electronic structure calculations. Phys. Rev. Lett. 69, 3547 (1992)

    Article  CAS  Google Scholar 

  12. X.P. Li, R.W. Nunes, D. Vanderbilt, Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B 47, 10891 (1993)

    Article  CAS  Google Scholar 

  13. M.S. Daw, Model for energetics of solids based on the density matrix. Phys. Rev. B 47, 10895 (1993)

    Article  CAS  Google Scholar 

  14. W. Kohn, Density functional and density matrix method scaling linearly with the number of atoms. Phys. Rev. Lett. 76, 3168 (1996)

    Article  CAS  Google Scholar 

  15. G. Galli, Linear scaling methods for electronic-structure calculations and quantum molecular-dynamics simulations. Curr. Opin. Sol. State Mat. Sci. 1(6), 864–874 (1996)

    Article  CAS  Google Scholar 

  16. E. Schwegler, M. Challacombe, Linear scaling computation of the hartree-fock exchange matrix. J. Chem. Phys. 105, 2726 (1996)

    Article  CAS  Google Scholar 

  17. A.H.R. Palser, D.E. Manolopoulos, Canonical purification of the density matrix in electronic-structure theory. Phys. Rev. B 58, 12704 (1998)

    Article  CAS  Google Scholar 

  18. A.D. Daniels, G.E. Scuseria, What is the best alternative to diagonalization of the hamiltonian in large scale semiempirical calculations? J. Chem. Phys. 110(3), 1321–1328 (1999)

    Article  CAS  Google Scholar 

  19. S. Goedecker, Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085–1123 (1999)

    Article  CAS  Google Scholar 

  20. M. Challacombe, A simplified density matrix minimization for linear scaling self-consistent field theory. J. Chem. Phys. 110, 2332–2342 (1999)

    Article  CAS  Google Scholar 

  21. A.M.N. Niklasson, Expansion algorithm for the density matrix. Phys. Rev. B 66, 155115 (2002)

    Article  Google Scholar 

  22. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002)

    Article  CAS  Google Scholar 

  23. A.M.N. Niklasson, M. Challacombe, Density matrix perturbation theory. Phys. Rev. Lett. 92, 193001 (2004)

    Article  Google Scholar 

  24. V. Weber, A.M.N. Niklasson, M. Challacombe, Ab initio linear scaling response theory: electric polarizability by perturbed projection. Phys. Rev. Lett. 92, 193002 (2004)

    Article  Google Scholar 

  25. C. Ochsenfeld, J. Kussmann, F. Koziol, Ab initio NMR spectra for molecular systems with a thousand and more atoms: a linear-scaling method. Angew. Chem. 43, 4485–4489 (2004)

    Article  CAS  Google Scholar 

  26. T. Ozaki, O(N) Krylov-subspace method for large-scale ab initio electronic structure calculations. Phys. Rev. B 74, 245101 (2006)

    Article  Google Scholar 

  27. D.R. Bowler, T. Miyazaki, Calculations for millions of atoms with density functional theory: linear scaling shows its potential. J. Phys. Condens. Matter 22, 074207 (2010)

    Article  CAS  Google Scholar 

  28. E. Rudberg, E.H. Rubensson, P. Salek, Kohn-Sham density functional theory electronic structure calculations with linearly scaling computational time and memory usage. J. Chem. Theor. Comput. 7, 340 (2011)

    Article  CAS  Google Scholar 

  29. J. VandeVondele, U. Borstnik, J. Hutter, Linear scaling self-consistent field calculations with millions of atoms in the condensed phase. J. Chem. Theor. Comput. 8, 3565 (2012)

    Article  CAS  Google Scholar 

  30. D.R. Bowler, T. Miyazaki, O(N) methods in electronic structure calculations. Rep. Prog. Phys. 75, 036503–036546 (2012)

    Article  CAS  Google Scholar 

  31. D.K. Remler, P.A. Madden, Molecular dynamics without effective potentials via the Car-Parrinello approach. Mol. Phys. 70, 921 (1990)

    Article  CAS  Google Scholar 

  32. P. Pulay, G. Fogarasi, Fock matrix dynamics. Chem. Phys. Lett. 386, 272 (2004)

    Article  CAS  Google Scholar 

  33. M.J. Cawkwell, A.M.N. Niklasson, Energy conserving, linear scaling Born-Oppenheimer molecular dynamics. J. Chem. Phys. 137, 134105 (2012)

    Article  CAS  Google Scholar 

  34. N. Bock, M.J. Cawkwell, J.D. Coe, A. Krishnapriyan, M.P. Kroonblawd, A. Lang, E.M. Saez, S.M. Mniszewski, C.F.A. Negre, A.M.N. Niklasson, E. Sanville, M.A. Wood, P. Yang, LATTE. https://github.com/lanl/LATTE (2008)

  35. M. Elstner, D. Poresag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260 (1998)

    Article  CAS  Google Scholar 

  36. M.W. Finnis, A.T. Paxton, M. Methfessel, M. van Schilfgarde, Crystal structures of zirconia from first principles and self-consistent tight binding. Phys. Rev. Lett. 81, 5149 (1998)

    Article  CAS  Google Scholar 

  37. T. Frauenheim, G. Seifert, M. Elsterner, Z. Hajnal, G. Jungnickel, D. Poresag, S. Suhai, R. Scholz, A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Phys. Status Solidi 217, 41 (2000)

    Article  CAS  Google Scholar 

  38. A.M.N. Niklasson, C.J. Tymczak, M. Challacombe, Time-reversible ab initio molecular dynamics. J. Chem. Phys. 126, 144103 (2007)

    Article  Google Scholar 

  39. A.M.N. Niklasson, Extended born-oppenheimer molecular dynamics. Phys. Rev. Lett. 100, 123004 (2008)

    Article  Google Scholar 

  40. P. Souvatzis, A.M.N. Niklasson, First principles molecular dynamics without self-consistent field optimization. J. Chem. Phys. 140, 044117 (2014)

    Article  Google Scholar 

  41. A.M.N. Niklasson, M. Cawkwell, Generalized extended Lagrangian Born-Oppenheimer molecular dynamics. J. Chem. Phys. 141, 164123 (2014)

    Article  Google Scholar 

  42. B. Aradi, A.M.N. Niklasson, T. Frauenheim, Extended Lagrangian density functional tight-binding molecular dynamics for molecules and solids. J. Chem. Theor. Comput. 11, 3357 (2015)

    Article  CAS  Google Scholar 

  43. S.M. Mniszewski, M.J. Cawkwell, M.E. Wall, J. Mohd-Yusof, N. Bock, T.C. Germann, A.M.N. Niklasson, Efficient parallel linear scaling construction of the density matrix for Born-Oppenheimer molecular dynamics. J. Chem. Theor. Comput. 11, 4644 (2015)

    Article  CAS  Google Scholar 

  44. C.F.A. Negre, S.M. Mniszewski, M.J. Cawkwell, N. Bock, M.E. Wall, A.M.N. Niklasson, Recursive factorization of the inverse overlap matrix in linear-scaling quantum molecular dynamics simulations. J. Chem. Theor. Comp. 12, 3063 (2016)

    Article  CAS  Google Scholar 

  45. M. Arita, D.R. Bowler, T. Miyazaki, Stable and efficient linear scaling first-principles molecular dynamics for 10000+atoms. J. Chem. Theor. Comput. 10, 5419 (2014)

    Article  CAS  Google Scholar 

  46. V. Vitale, J. Dziezic, A. Albaugh, A. Niklasson, T.J. Head-Gordon, C.-K. Skylaris, Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory. J. Chem. Phys. 12, 124115 (2017)

    Article  Google Scholar 

  47. M. Elstner, T. Frauenheim, T. Kaxiras, G. Seifert, S. Suhai, A self-consistent charge density-functional based tight-binding scheme for large biomolecules. Phys. Status Solidi 217, 357 (2000)

    Article  CAS  Google Scholar 

  48. A.S. Christensen, T. Kubar, Q. Cui, M. Elstner, Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biological applications. Chem. Rev. 116, 5301 (2016)

    Article  CAS  Google Scholar 

  49. I.S.Y. Wang, M. Karplus, Dynamics of organic reactions. J. Am. Chem. Soc. 95, 8160 (1973)

    Article  CAS  Google Scholar 

  50. A. Warshel, M. Karplus, Semiclassical trajectory approach to photoisomerization. Chem. Phys. Lett. 32, 11 (1975)

    Article  CAS  Google Scholar 

  51. R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471 (1985)

    Article  CAS  Google Scholar 

  52. J. Hutter, Car Parrinello molecular dynamics. WIREs Comput. Mol. Sci. 2, 604 (2012)

    Article  CAS  Google Scholar 

  53. B. Hartke, E. Carter, Chem. Phys. Lett. 189, 358 (1992)

    Article  CAS  Google Scholar 

  54. F. Lambert, J. Clerouin, S. Mazevet, Eur. Phys. Lett. 75, 681 (2006)

    Article  CAS  Google Scholar 

  55. H.B. Schlegel, J.M. Millam, S.S. Iyengar, G.A. Voth, A.D. Daniels, G. Scusseria, M.J. Frisch, Ab initio molecular dynmaics: Propagating the density matrix with gaussian orbitals. J. Chem. Phys. 114, 9758 (2001)

    Article  CAS  Google Scholar 

  56. S.S. Iyengar, H.B. Schlegel, J.M. Millam, G.A. Voth, G. Scusseria, M.J. Frisch, Ab initio molecular dynamics: Propagating the density matrix with gaussian orbitals. ii. generalizations based on mass-weighting, idempotency, energy conservation and choice of initial conditions. J. Chem. Phys. 115, 10291 (2001)

    Article  CAS  Google Scholar 

  57. J.M. Herbert, M. Head-Gordon, Curvy-steps approach to constraint-free extended-lagrangian ab initio molecular dynamics, using atom-centered basis functions: convergence toward born-oppenheimer trajectories. J. Chem. Phys. 121, 11542 (2004)

    Article  CAS  Google Scholar 

  58. J. Li, C. Haycraft, S.S. Iyengar, J. Chem. Theor. Comput. 12, 2493 (2016)

    Article  CAS  Google Scholar 

  59. A.M.N. Niklasson, P. Steneteg, A. Odell, N. Bock, M. Challacombe, C.J. Tymczak, E. Holmstrom, G. Zheng, V. Weber, Extended Lagrangian Born-Oppenheimer molecular dynamics with dissipation. J. Chem. Phys. 130, 214109 (2009)

    Article  Google Scholar 

  60. A. Odell, A. Delin, B. Johansson, N. Bock, M. Challacombe, A.M.N. Niklasson, Higher-order symplectic integration in Born-Oppenheimer molecular dynamics. J. Chem. Phys. 131, 244106 (2009)

    Article  Google Scholar 

  61. P. Steneteg, I.A. Abrikosov, V. Weber, A.M.N. Niklasson, Wave function extended Lagrangian Born-Oppenheimer molecular dynamics. Phys. Rev. B 82, 075110 (2010)

    Article  Google Scholar 

  62. G. Zheng, A.M.N. Niklasson, M. Karplus, Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method. J. Chem. Phys. 135, 044122 (2011)

    Article  Google Scholar 

  63. L. Lin, J. Lu, S. Shao, Analysis of time reversible Born-Oppenheimer molecular dynamics. Entropy 16, 110 (2014)

    Article  Google Scholar 

  64. J. Herbert, M. Head-Gordon, Accelerated, energy-conserving Born-Oppenheimer molecular dynamics via Fock matrix extrapolation. Phys. Chem. Chem. Phys. 7, 3269 (2005)

    Article  CAS  Google Scholar 

  65. T.D. Kühne, M. Krack, F.R. Mohamed, M. Parrinello, Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007)

    Article  Google Scholar 

  66. J. Kolafa, Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules. J. Comput. Chem. 25, 335 (2004)

    Article  CAS  Google Scholar 

  67. C.G. Broyden, A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 577 (1965)

    Article  Google Scholar 

  68. D.G. Anderson, Iterative procedures for nonlinear equations. J. Assoc. Comput. Mach. 12, 547 (1965)

    Article  Google Scholar 

  69. P. Pulay, Convergence acceleration of iterative sequences. The case of scf iteration. Chem. Phys. Let. 73(2), 393–398 (1980)

    Article  CAS  Google Scholar 

  70. G.P. Srivastava, Broyden’s method for self-consistent field convergence acceleration. J. Phys. A: Math. Gen. 17, L317 (1984)

    Article  CAS  Google Scholar 

  71. G.P. Kerker, Efficient iteration scheme for self-consistent pseudopotential calculations. Phys. Rev. B 23, 3082–3084 (1981)

    Article  CAS  Google Scholar 

  72. D.D. Johnson, Modified Broyden’s method for accelerating convergence in self-consistent calculations. Phys. Rev. B 38, 12807–12813 (1988)

    Article  CAS  Google Scholar 

  73. E. Martinez, M.J. Cawkwell, A.F. Voter, A.M.N. Niklasson, Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics. J. Chem. Phys. 142, 1770 (2015)

    Article  Google Scholar 

  74. R.D. Engle, R.D. Skeel, M. Drees, Monitoring energy drift with shadow hamiltonians. J. Comp. Phys. 206, 432 (2005)

    Article  Google Scholar 

  75. B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  76. A. Odell, A. Delin, B. Johansson, M.J. Cawkwell, A.M.N. Niklasson, Geometric integration in Born-Oppenheimer molecular dynamics. J. Chem. Phys. 135, 224105 (2011)

    Article  Google Scholar 

  77. O.D.A. Albaugh, T.J. Head-Gordon, An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction. J. Chem. Phys. 143, 174104 (2015)

    Article  Google Scholar 

  78. P. Souvatzis, A.M.N. Niklasson, Extended Lagrangian Born-Oppenheimer molecular dynamics in the limit of vanishing self-consistent field optimization. J. Chem. Phys. 139, 214102 (2013)

    Article  Google Scholar 

  79. K. Nomura, P.E. Small, R.K. Kalia, A. Nakano, P. Vashista, An extended-Lagrangian scheme for charge equilibration in reactive molecular dynamics simulations. Comput. Phys. Comm. 192, 91 (2015)

    Article  CAS  Google Scholar 

  80. G. Golub, C.F. van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, 1996)

    Google Scholar 

  81. A.M. Niklasson, S.M. Mniszewski, C.F. Negre, M.E. Wall, M.J. Cawkwell, PROGRESS version 1.0. Tech. rep., Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) (2016)

    Google Scholar 

  82. B. Aradi, N. Bock, S.M. Mniszewski, J. Mohd-Yusof, C. Negre, The basic matrix library (BML). https://qmmd.github.io (2017)

  83. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipies in FORTRAN (Cambridge University Press, Port Chester, NY, 1992)

    Google Scholar 

  84. M. Challacombe, A simplified density matrix minimization for linear scaling self-consistent field theory. J. Chem. Phys. 110(5), 2332–2342 (1999)

    Article  CAS  Google Scholar 

  85. M. Benzi, C.D. Mayer, M. Tuma, Orderings for factorized sparse approximate inverse preconditioners. SIAM J. Sci. Comput. 17, 1135 (2000)

    Article  Google Scholar 

  86. T. Ozaki, Efficient recursion method for inverting an overlap matrix. Phys. Rev. B 64, 195110 (2001)

    Article  Google Scholar 

  87. J.M. Millam, G.E. Scuseria, Linear scaling conjugate-gradient density-matrix search as an alternative to diagonalization for first principles electronic-structure calculations. J. Chem. Phys. 106, 5569–5577 (1997)

    Article  CAS  Google Scholar 

  88. P.O. Löwdin, Quantum theory of cohesive properties of solids. Adv. Phys. 5, 1 (1956)

    Article  Google Scholar 

  89. A.M.N. Niklasson, Iterative refinement method for the approximate factorization of a matrix inverse. Phys. Rev. B 70, 193102 (2004)

    Article  Google Scholar 

  90. F. Vazquez, G. Ortega, J.J. Fernandez, E. Garzon, Improving the performance of the sparse matrix vector product with GPUs, in10th IEEE International Conference on Computer and Information Technology, pp. 1146–1151 (2010)

    Google Scholar 

  91. OpenMP, OpenMP Architecture Review Board (2014). http://openmp.org

  92. A.M.N. Niklasson, S.M. Mnizsewski, C.F.A. Negre, M.J. Cawkwell, P.J. Swart, J. Mohd-Yusof, T.C. Germann, M.E. Wall, N. Bock, E.H. Rubensson, H. Djidjev, Graph-based linear scaling electronic structure theory. J. Chem. Phys. 144, 234101 (2016)

    Article  Google Scholar 

  93. The Exascale Computing Project (2017). https://exascaleproject.org/exascale-computing-project/

  94. LAMMPS Molecular Dynamics Simulator (2017). http://lammps.sandia.gov

  95. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1 (1995)

    Article  CAS  Google Scholar 

  96. E. Sanville, N. Bock, W.M. Challacombe, A.M.N. Niklasson, M.J. Cawkwell, D.M. Dattelbaum, S. Sheffield, in Proceedings of the Fourteenth International Detonation Symposium, pp. 91–101 (Office of Naval Research, Arlington VA, ONR-351-10-185, 2010)

    Google Scholar 

  97. M. Cawkwell, A.M.N. Niklasson, D.M. Dattelbaum, Extended lagrangian born-oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene. J. Chem. Phys. 142, 064512 (2015)

    Article  CAS  Google Scholar 

  98. R.W. Woolfolk, M. Cowperthwaite, R. Shaw, A “universal” Hugoniot for liquids. Thermochim. Acta 5, 409 (1973)

    Google Scholar 

  99. R.W. Hartel, A.V. Shastry, Sugar crystallization in food products. Crit. Rev. Food Sci. Nutrition 1, 49 (1991)

    Article  Google Scholar 

  100. J.C.P. Chen, C.C. Chou, Cane Sugar Handbook: A Manual for Cane Sugar Manufacturers and Their Chemists, 12th edn. (Wiley, New York, 1993)

    Google Scholar 

  101. L. Rosza, Sugar crystallisation: Look for the devil in the details. part 1. Int. Sugar J. 110, 1320 (2008)

    Google Scholar 

  102. S. Immel, F.W. Lichtenthaler, The conformation of sucrose in water: a molecular dynamics approach. Liebigs Ann. 1995, 1925 (1995)

    Article  Google Scholar 

  103. N.C. Ekdawi-Sever, P.B. Conrad, J.J. de Pablo, Molecular simulation of sucrose solutions near the glass transition temperature. J. Chem. Phys. 105, 734 (2001)

    Article  CAS  Google Scholar 

  104. V. Molinero, T. Cagin, W.A. Goddard III, Sugar, water and free volume networks in concentrated sucrose solutions. Chem. Phys. Lett. 377, 469 (2003)

    Article  CAS  Google Scholar 

  105. J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267, 585–590 (1977)

    Article  CAS  Google Scholar 

  106. N.F. Dupuis, C. Wu, J.-E. Shea, M.T. Bowers, The amyloid formation mechanism in human iapp: Dimers have \(\beta \)-strand monomer-monomer interfaces. J. Am. Chem. Soc. 133(19), 7240–7243 (2011)

    Article  CAS  Google Scholar 

  107. D.F. Raffa, A. Rauk, Molecular dynamics study of the beta amyloid peptide of Alzheimer’s disease and its divalent copper complexes. J. Phys. Chem. B 111(14), 3789–3799 (2007)

    Article  CAS  Google Scholar 

  108. E.F. Holby, G. Wu, P. Zelenay, C.D. Taylor, Structure of Fe-Nx-C defects in oxygen reduction reaction catalysts from first-principles modeling. J. Phys. Chem. C 118(26), 14388–14393 (2014)

    Article  CAS  Google Scholar 

  109. K. Artyushkova, I. Matanovic, B. Halevi, P. Atanassov, Oxygen binding to active sites of Fe-N-C ORR electrocatalysts observed by ambient-pressure XPS. J. Phys. Chem. C 121(5), 2836–2843 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review was partly supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two US Department of Energy organizations (Office of Science and the National Nuclear Security Administration) and by the Laboratory Directed Research and Development program at Los Alamos National Laboratory. This work was also partly funded by a Cooperative Research and Development Agreement with Mars, Inc (LA16C10763). A.M.N.N. was supported by the Department of Energy, Office of Basic Energy Sciences (LANL2014E8AN). We are thankful to Dr. I. Matanovic from the University of New Mexico, Chemical & Biological Engineering Department, for providing information about fuel cell catalysts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Redondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Negre, C.F.A., Niklasson, A.M.N., Redondo, A. (2021). Quantum-Based Molecular Dynamics Simulations with Applications to Industrial Problems. In: Shankar, S., Muller, R., Dunning, T., Chen, G.H. (eds) Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile. Springer Series in Materials Science, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-18778-1_15

Download citation

Publish with us

Policies and ethics