Skip to main content

Integrated Molecular Modeling and Experimental Studies: Applications to Advanced Material Design and Process Optimization

  • Chapter
  • First Online:
Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 284))

  • 2058 Accesses

Abstract

The synergy between experimental and computational modeling has yielded great benefits for both fields, in particular in the areas of material screening and applications, and the process design and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Periana, D.J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998)

    Article  CAS  Google Scholar 

  2. Z. Li, Y. Tang, J. Cheng, Use of ionic liquids as coordination ligands for organometallic catalyst. United States Patent 7,615,644 (2009)

    Google Scholar 

  3. J. Cheng, Z. Li, M. Haught, Y. Tang, Direct methane conversion to methanol by ionic liquid-dissolved platinum catalysts. Chem. Commun. 4617–4619 (2006). https://doi.org/10.1039/b610328f

  4. Z. Xu, J. Oxgaard, W.A. Goddard III, The mechanism by which ionic liquids enable shilov-type CH activation in an oxidizing medium. Organometallics 27(15), 3770–3773 (2008)

    Article  CAS  Google Scholar 

  5. Y. Tang, Q. Ma, Methyl Chloride from Direct Methane Partial Oxidation: A High-Temperature Shilov-Like Catalytic System. Final Technical Report (US Department of Energy, 2012)

    Google Scholar 

  6. S. Kang, Q. Ma, W. Chen, Y. Tang, High-temperature Shilov-type methane conversion reaction: mechanistic and kinetic studies. Chin. J. Catal. 36(10), 1777–1784 (2015)

    Article  CAS  Google Scholar 

  7. J. Kua, X. Xu, R.A. Periana, W.A. Goddard III, Stability and thermodynamics of the PtCI2 type catalyst for activating methane to methanol: a computational study. Organometallics 21, 511–525 (2001)

    Article  Google Scholar 

  8. K.J.H. Young, S.K. Meier, J.M. Gonzales, J. Oxgaard, W.A. Goddard III, R.A. Periana, Heterolytic CH activation with a cyclometalated platinum(II) 6-phenyl-4,4′-di-tert-butyl-2,2-bipyridine complex. Oragnometallics 25, 4734–4737 (2006)

    Article  CAS  Google Scholar 

  9. O.A. Mironov, S.M. Bischof, M.M. Konnick, B.G. Hashiguchi, V.R. Ziatdinov, W.A. Goddard III, M. Ahlquist, R.A. Periana, Using reduced catalysts for oxidation reactions: mechanistic studies of the “Periana-Catalytica” system for CH4 oxidation. J. Am. Chem. Soc. 135(39), 14644–14658 (2013)

    Article  CAS  Google Scholar 

  10. W.-G. Liu, A.V. Sberegaeva, R.J. Nielsen, W.A. Goddard III, A.N. Vedernikov, Mechanism of O2 activation and methanol production by (Di(2-pyridyl)methanesulfonate)PtIIMe(OH2)(2-n)-complex from theory with validation from experiment. J. Am. Chem. Soc. 136(6), 2335–2341 (2014)

    Article  CAS  Google Scholar 

  11. X. Xu, G. Fu, W.A. Goddard III, R.A. Periana, Selective oxidation of CH4 to CH3OH using the catalytica (bypm)PtCl2 catalyst: a theoretical study, in Natural Gas Conversion VII: Studies in Surface Science and Catalysis, pp. 499–504 (2004)

    Google Scholar 

  12. J.C. Morgan, R.S. Schechter, W.H. Wade, Recent advances in TEH study of low interfacial tensions, in Improved Oil Recovery by Surfactant and Polymer Flooding, eds. by D.O. Shah, R. S. Schechter (Academic Press, New York, 1977), pp. 101–118

    Google Scholar 

  13. P.J. Shuler, H. Tang, Z. Lu, Y. Tang, Chemical process for improved oil recovery from Bakken Shale, in The Canadian Unconventional Resources Conference (Society of Petroleum Engineers, Calgary, Alberta, Canada, 2011). CSUG/SPE-147531

    Google Scholar 

  14. P.J. Shuler, Z. Lu, Q. Ma, Y. Tang, Surfactant huff-n-puff application potentials for unconventional reservoirs, in The SPE Improved Oil Recovery Conference (Society of Petroleum Engineers, Tulsa, OK, 2016), SPE-179667-MS

    Google Scholar 

  15. W.A. Goddard, III, Y. Tang, P. Shuler, M. Blanco, S.S. Jang, S.-T. Lin, P. Maiti, Y. Wu, S. Iglauer, X. Zhang, in Lower Cost Methods for Improved Oil Recovery (IOR) vis Surfactant Flooding (US Department of Energy, Washington, DC, 2004)

    Google Scholar 

  16. E.A. Knaggs, M.L. Nussbaum, J.B. Carlson, R.C. Guenzani, Petroleum sulfonate utilization in enhanced oil recovery systems, in SPE Annual Fall Technical Conference and Exhibition. (Society of Petroleum Engineers, New Orleans, LA, 1976). SPE-6006. https://doi.org/10.2118/6006-MS

  17. A.M. Michels, R.S. Djojosoeparto, H. Haas, R.B. Mattern, P.B. van der Wag, W.M. Schulte, Enhanced waterflooding design with dilute surfactant concentrations for north sea conditions. SPE Reserv. Eng. Society of Petroleum Engineers. 35372 (1996)

    Google Scholar 

  18. V.K. Bansal, D.O. Shah, The effect of addition of ethoxylated sulfonate on salt tolerance, optimal salinity, and impedance characteristics of petroleum sulfonate solutions. J. Colloid Interface Sci. 65(3), 451–459 (1978). https://doi.org/10.1016/0021-9797(78)90096-6

    Article  CAS  Google Scholar 

  19. C. Andrews, N.M. Colley, R. Thaver, Preliminary studies of the behaviour of some commercially available surfactants in hydrocarbon-brine-mineral systems, in ed. by F.J. Fayers. Proceeding of the Third European Symposium on Enhanced Oil Recovery (Elsevier, Bournemouth, UK, 1981), pp. 63–80

    Google Scholar 

  20. T. Austad, S. Ekrann, I. Fjelde, K. Taugbol, Chemical flooding of oil reservoirs Part 9. Dynamic adsorption of surfactant onto sandstone cores from injection water with and without polymer present. Colloids Surf. A: Physicochem. Eng. Aspects 127(1–3), 69–82 (1997). https://doi.org/10.1016/S0927-7757(96)03952-0

    Article  CAS  Google Scholar 

  21. W. Wu, A. Vaskas, M. Delshad, G.A. Pope, K. Sepehrnoori, Design and optimization of low-cost chemical flooding, in SPE/DOE Improved Oil Recovery Symposium (Society of Petroleum Engineers, Tulsa, OK, 1996). SPE-35355

    Google Scholar 

  22. P.D. Berger, C.H. Lee, Ultra-low concentration surfactants for sandstone and limestone floods, in SPE/DOE Improved Oil Recovery Symposium (Society of Petroleum Engineers, Tulsa, OK, 2002). SPE-75186. https://doi.org/10.2118/75186-MS

  23. S. Jayanti, G.A. Pope, V. Weerasooriya, L. Zhong, D. Varadarajan, M. Taimur, Use of surfactants to recover oils from groundwater, in SPE/EPA/DOE Exploration and Production Environmental Conference (Society of Petroleum Engineers, San Antonio, TX, 2001). SPR-66753. https://doi.org/10.2118/66753-MS

  24. Y. Wu, P. Shuler, M. Blance, Y. Tang, W.A. Goddard, III, A study of branched alcohol propoxylate sulfate surfactants for improved oil recovery, in The 2005 SPE Annual Technical Conference ADN Exhibition (Society of Petroleum Engineers, Dallas, TX, 2005). SPE-95404

    Google Scholar 

  25. Y. Wu, S. Iglauer, P. Shuler, Y. Tang, W.A. Goddard, III, Alkyl polyglycoside-sorbitan ester formulations for improved oil recovery. Tenside Surfactant Deterg. 47, 280–287 (2010)

    Google Scholar 

  26. Y. Wu, S. Iglauer, P. Shuler, Y. Tang, W.A. Goddard III, Branched alkyl alcohol propoxylated sulfate surfactants for improved oil recovery. Tenside Surfactants Deterg. 47(3), 152–161 (2010)

    Article  CAS  Google Scholar 

  27. S. Iglauer, Y. Fu, P. Shuler, Y. Tang, W.A. Goddard III, New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. J. Pet. Sci. Eng. 71, 23–29 (2010)

    Article  CAS  Google Scholar 

  28. S. Iglauer, Y. Wu, P.J. Shuler, M. Blanco, Y. Tang, W.A. Goddard, III, Alkyl polyglycoside surfactants for improved oil recovery, in The 2004 SPE/DOE Fourteenth Symposium on Improved Oil Recovery (Society of Petroleum Engineers, Tulsa, OK, 2004). SPE-89472

    Google Scholar 

  29. S. Iglauer, Y. Wu, P. Shuler, Y. Tang, W.A. Goddard, III, Alkyl polyglycoside surfactant–alcohol cosolvent formulations for improved oil recovery. Colloids Surf. A: Physicochem. Eng. Aspects 339, 48–59 (2009)

    Google Scholar 

  30. R.C. Nelson, G.A. Pope, Phase relationships in chemical flooding. Soc. Pet. Eng. J. 18(05), 6773 (1978)

    Article  Google Scholar 

  31. L.W. Lake, in Enhanced Oil Recovery (Prentice Hall, Upper Saddle River, 1989)

    Google Scholar 

  32. S.S. Jang, S.-T. Lin, P.K. Maiti, M. Blance, W.A. Goddard III, P. Shuler, Y.H. Tang, Molecular dynamics study of a surfactant-mediated decane-water interface: effect of molecular architecture of alkyl benzene sulfonate. J. Phys. Chem. B 108(32), 12130–12140 (2004)

    Article  CAS  Google Scholar 

  33. P.H. Doe, W.H. Wade, Alkyl benzene sulfonates for producing low interfacial tensions between hydrocarbons and water. J. Colloid Interface Sci. 59(3), 525–531 (1977). https://doi.org/10.1016/0021-9797(77)90048-0

    Article  CAS  Google Scholar 

  34. API, American Petroleum Institute, Proceedings, Region B. Am. Pet. Inst. Div. Refin. 11, 102–103 (1930)

    Google Scholar 

  35. M.P. Barrow, L.A. McDonnell, X. Feng, J. Walker, P.J. Derrick, Determination of the nature of naphthenic acids present in crude oils using nanospray fourier transform ion cyclotron resonance mass spectrometry: the continued battle against corrosion. Anal. Chem. 75(4), 860–866 (2003)

    Google Scholar 

  36. N.A. Tomczyk, R.E. Winans, On the nature and origin of acidic species in petroleum. 1. detailed acid type distribution in a California crude oil. Energy Fuels 15(6), 1498–1504 (2001)

    Google Scholar 

  37. W.A. Derungs, Naphthenic acid corrosion—an old enemy of the petroleum industry. Corrosion 12(12), 41–46 (1956). https://doi.org/10.5006/0010-9312-12.12.41

    Article  Google Scholar 

  38. D.J. Darensbourg, E.M. Longridge, B. Khandelwal, J.H. Reibenspies, Synthesis and structure of 1,2-bis(Diphenylphosphino)ethane complexes of copper(I) acetate catalysts for the decarboxylation of carboxylic acids. J. Coord. Chem. 32(1–3), 27–37 (1994). https://doi.org/10.1080/00958979408024235

    Article  CAS  Google Scholar 

  39. D.J. Darensbourg, M.W. Holtcamp, E.M. Longridge, B. Khandelwal, K.K. Klausmeyer, J.H. Reibenspies, Role of the metal center in the homogeneous catalytic decarboxylation of select carboxylic acids. copper(i) and zinc(ii) derivatives of cyanoacetate. J. Am. Chem. Soc. 117(1), 318–328 (1995). https://doi.org/10.1021/ja00106a034

    Article  CAS  Google Scholar 

  40. H. Brunner, J. Müller, J. Spitzer, Enantioselective catalysis, C. Decarboxylation of malonic acids in the presence of copper(I) compounds—not a copper(I) catalysis but a base effect. Monatshefte für Chemie Chem. Monthly 127(8–9), 845–858 (1996). https://doi.org/10.1007/BF00807023

    Article  CAS  Google Scholar 

  41. M. Watanabe, H. Inomata, R.L. Smith Jr., K. Arai, Catalytic decarboxylation of acetic acid with zirconia catalyst in supercritical water. Appl. Catal. A 219(1–2), 149–156 (2001). https://doi.org/10.1016/S0926-860X(01)00677-9

    Article  CAS  Google Scholar 

  42. D.J. Darensbourg, J.A. Chojnacki, E.V. Atnip, The catalytic decarboxylation of cyanoacetic acid: anionic tungsten carboxylates as homogeneous catalysts. J. Am. Chem. Soc. 115(11), 4675–4682 (1993). https://doi.org/10.1021/ja00064a031

    Article  CAS  Google Scholar 

  43. Y. Takemura, A. Nakamura, H. Taguchi, K. Ouchi, Catalytic decarboxylation of benzoic acid. Ind. Eng. Chem. Prod. Res. Dev. 24(2), 213–215 (1985). https://doi.org/10.1021/i300018a007

    Article  CAS  Google Scholar 

  44. A. Zhang, Q. Ma, K. Wang, X. Liu, P. Shuler, Y. Tang, Naphthenic acid removal from crude oil through catalytic decarboxylation on magnesium oxide. Appl. Catal. A: Gen. 103–109 (2006)

    Google Scholar 

  45. A. Zhang, Q. Ma. K. Wang, Y. Tang, W.A. Goddard, III, Improved processes to remove naphthenic acids. US Department of Energy (2005)

    Google Scholar 

  46. C. Friedel, Ueber sg gemischte acetone. Eur. J. Org. Chem. 108(1), 122–125 (1858). https://doi.org/10.1002/jlac.18581080124

    Article  Google Scholar 

  47. T.N. Pham, D. Shi, D.E. Resasco, Reaction kinetics and mechanism of ketonization of aliphatic carboxylic acids with different carbon chain lengths over Ru/TiO2 catalyst. J. Catal. 314, 149–158 (2014). https://doi.org/10.1016/j.jcat.2014.04.008

    Article  CAS  Google Scholar 

  48. T.N. Pham, T. Sooknoi, S.P. Crossley, D.E. Resasco, Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catal. 3(11), 2456–2473 (2013). https://doi.org/10.1021/cs400501h

    Article  CAS  Google Scholar 

  49. M. Renz, Ketonizatio of carboxylic acids by decarboxylation: mechanism and scope. Eur. J. Org. Chem. 2005(6), 979–988 (2005). https://doi.org/10.1002/ejoc.200400546

    Article  CAS  Google Scholar 

  50. M.A. Barteau, Organic reactions at well-defined oxide surfaces. Chem. Rev. 96(4), 1413–1430 (1996). https://doi.org/10.1021/cr950222t

    Article  CAS  Google Scholar 

  51. K.M. Dooley, Catalysis of acid/aldehyde/alcohol condensations to ketones, in ed. by G.W. Roberts, J.J. Spivey. Catalysis, pp. 293 (2004). https://doi.org/10.1039/9781847553294-00293

  52. S. Rajadurai, Pathways for carboxylic acid decomposition on transition metal oxides. Catal. Rev. Sci. Eng. 36(3), 385–403 (2006). https://doi.org/10.1080/01614949408009466

    Article  Google Scholar 

  53. M. Jayamani, C.N. Pillai, Reaction of carboxylic acids with carbonyl compounds over alumina. J. Catal. 87(1), 93–97 (1984). https://doi.org/10.1016/0021-9517(84)90171-4

    Article  CAS  Google Scholar 

  54. R. Martinez, M.C. Huff, M.A. Barteau, Ketonization of acetic acid on titania-functionalized silica monoliths. J. Catal. 222(2), 404–409 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank for all the great dedicative works from many people from both PEER/MSC centers at Caltech, including (the PEER Center): Patrick J. Shuler, Zaiwei Li, Jihong Cheng, Weiqun Chen, Mark Haught, Aihui Zhang, Kangshi Wang, Yongfu Wu, Stefan Iglauer, Xiaohang Zhang, Xiangdong Fang, Sheng Wu, Xicai Liu, Xiaojun Chen; and (the MSC Center): Mario Blance, Jonas Oxgaard, Adri van Duin, Robert Nielsen, Seung Soon Jang, Shiang-Tai Lin, Zhitao Xu, Parbal Marti, Sam Cheung, Sanja Pudar; and many others whose names are not mentioned above.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchun Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, Y., Ma, Q. (2021). Integrated Molecular Modeling and Experimental Studies: Applications to Advanced Material Design and Process Optimization. In: Shankar, S., Muller, R., Dunning, T., Chen, G.H. (eds) Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile. Springer Series in Materials Science, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-18778-1_14

Download citation

Publish with us

Policies and ethics