Skip to main content

Pictures are Crucial: Intuition, Electronic Structure, and Reactions in Materials Chemistry

  • Chapter
  • First Online:
Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 284))

  • 2051 Accesses

Abstract

In this chapter, I will describe how I have found the concepts of the valence bond description of chemical bonding essential in several materials chemistry research programs I have participated in. I learned these ideas from Bill Goddard early on in my scientific education, and they have been constant intellectual companions. An intuition about how electronic structures change as atoms move is a great boon to a synthesis chemist when designing and exploiting new chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.C. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals. An Introduction to Modern Structural Chemistry. 3rd ed. (Cornell University Press 1960), 644 pp

    Google Scholar 

  2. L.B. Harding, W.A. Goddard III, Ab initio studies on the singlet-triplet splitting of methylene (CH2). J. Chem. Phys. 67(4), 1777–1779 (1977)

    Article  CAS  Google Scholar 

  3. L.B. Harding, W.A. Goddard III, Methylene: ab initio vibronic analysis and reinterpretation of the spectroscopic and negative ion photoelectron experiments. Chem. Phys. Lett. 55(2), 217–220 (1978)

    Article  CAS  Google Scholar 

  4. W.A. Goddard, III, L.B. Harding, The description of chemical bonding from ab initio calculations. Annu. Rev. Phys. Chem. 29, 363–96 (1978)

    Google Scholar 

  5. K.H. Doetz, J. Stendel, Fischer carbene complexes in organic synthesis: metal-assisted and metal-templated reactions. Chem. Rev. (Washington, DC, U.S.) 109(8), 3227–3274 (2009)

    Google Scholar 

  6. R.R. Schrock, Recent advances in high oxidation state Mo and W Imido alkylidene chemistry. Chem. Rev. 109(8), 3211–3226 (2009)

    Article  CAS  Google Scholar 

  7. A.K. Rappe, W.A. Goddard III, Mechanism of metathesis and epoxidation in chromium and molybdenum complexes containing methyl-oxo bonds. J. Am. Chem. Soc. 102(15), 5114–5115 (1980)

    Article  CAS  Google Scholar 

  8. A.K. Rappe, W.A. Goddard, III. Theoretical studies of reactions at transition metal centers, (Plenum, 1981)

    Google Scholar 

  9. A.K. Rappe, W.A. Goddard III, Olefin metathesis—a mechanistic study of high-valent Group VI catalysts. J. Am. Chem. Soc. 104(2), 448–456 (1982)

    Article  CAS  Google Scholar 

  10. M.L. Steigerwald, W.A. Goddard, III, 2 s + 2 s Reactions at transition metals. Part 3. Dichlorotitanacyclopropane. The structure and reactivity of a metallacyclopropane. J. Am. Chem. Soc. 107(18), 5027–35 (1985)

    Google Scholar 

  11. W.A. Goddard III, Orbital phase continuity principle and selection rules for concerted reactions. J. Am. Chem. Soc. 92(25), 7520–7521 (1970)

    Article  CAS  Google Scholar 

  12. W.A. Goddard III, Selection rules for chemical reactions using the orbital phase continuity principle. J. Am. Chem. Soc. 94(3), 793–807 (1972)

    Article  CAS  Google Scholar 

  13. M.L. Steigerwald, W.A. Goddard, III, The 2s + 2s reactions at transition metals. 1. The reactions of deuterium with dichlorohydrotitanium (1+) ion (Cl2TiH+), titanium hydrogen dichloride (Cl2TiH), and scandium hydrogen dichloride (Cl2ScH). J. Am. Chem. Soc. 106(2), 308–311 (1984)

    Google Scholar 

  14. C.B. Murray, et al., Synthesis and structural characterization of II-VI semiconductor nanocrystallites (quantum dots). Z. Phys. D: At. Mol. Clusters 26(Suppl.), 231–233 (1993)

    Google Scholar 

  15. G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd edn. (Academic 1999), 572 pp

    Google Scholar 

  16. D.W. Kisker et al., Low-Temperature organometallic vapor-phase epitaxial-growth of cdte using a new organotellurium source. Appl. Phys. Lett. 50(23), 1681–1683 (1987)

    Article  CAS  Google Scholar 

  17. C.E. Moore, Atomic energy levels as derived from the analyses of optical spectra. United States National Bureau of Standards NSRDS-NBS 35. 1971, Washington: U.S. National Bureau of Standards; for sale by the Supt. of Docs., U.S. Govt. Print. Off. v

    Google Scholar 

  18. R.A. Zingaro, B.H. Steeves, K. Irgolic, Phosphine tellurides. J. Organomet. Chem. 4(4), 320–323 (1965)

    Article  CAS  Google Scholar 

  19. M.L. Steigerwald, C.R. Sprinkle, Application of phosphine tellurides to the preparation of Group II-VI (2-16) semiconductor materials. Organometallics 7(1), 245–246 (1988)

    Article  CAS  Google Scholar 

  20. M.L. Steigerwald, C.R. Sprinkle, Organometallic synthesis of II-VI semiconductors. 1. Formation and decomposition of bis (organotelluro) mercury and bis (organotelluro) cadmium compounds. J. Am. Chem. Soc. 109(23), 7200–7201 (1987)

    Google Scholar 

  21. J.G. Brennan et al., The preparation of large semiconductor clusters via the pyrolysis of a molecular precursor. J. Am. Chem. Soc. 111(11), 4141–4143 (1989)

    Article  CAS  Google Scholar 

  22. R. Rossetti, S. Nakahara, L.E. Brus, Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of cadmium sulfide crystallites in aqueous solution. J. Chem. Phys. 79(2), 1086–1088 (1983)

    Article  CAS  Google Scholar 

  23. M.L. Steigerwald et al., Surface derivatization and isolation of semiconductor cluster molecules. J. Am. Chem. Soc. 110(10), 3046–3050 (1988)

    Article  CAS  Google Scholar 

  24. J.G. Brennan et al., The transition from molecules to solids: molecular syntheses of Ni9Te6(PEt3)8, Ni20Te18(PEt3)12 and NiTe. J. Am. Chem. Soc. 111(26), 9240–9241 (1989)

    Article  CAS  Google Scholar 

  25. J.G. Brennan et al., Cluster intermediates in an organometallic synthesis of palladium telluride PdTe. J. Am. Chem. Soc. 112(25), 9233–9236 (1990)

    Article  CAS  Google Scholar 

  26. M.L. Steigerwald, T. Siegrist, S.M. Stuczynski, Initial stages in the molecule-based growth of the solid-state compound cobalt telluride (CoTe). Inorg. Chem. 30(26), 4940–4945 (1991)

    Article  CAS  Google Scholar 

  27. M.L. Steigerwald, T. Siegrist, S.M. Stuczynski, Octatelluridohexakis (triethylphosphine) hexacobalt and a connection between Chevrel clusters and the NiAs structure. Inorg. Chem. 30(10), 2256–2257 (1991)

    Article  CAS  Google Scholar 

  28. S.M. Stuczynski, Y.U. Kwon, M.L. Steigerwald, The use of phosphine chalcogenides in the preparation of cobalt chalcogenides. J. Organomet. Chem. 449(1–2), 167–172 (1993)

    Article  CAS  Google Scholar 

  29. M.L. Steigerwald, Selective syntheses of iron monotelluride and iron ditelluride from organometallic precursors. Synthesis and pyrolysis of [Cp(Et3P)(CO)Fe]2(Te)n. Chem. Mater. 1(1), 52–7 (1989)

    Google Scholar 

  30. M.L. Steigerwald et al., Effect of diverse ligands on the course of a molecules-to-solids process and properties of its intermediates. Inorg. Chem. 33(15), 3389–3395 (1994)

    Article  CAS  Google Scholar 

  31. M.L. Steigerwald et al., Iron telluride (Et3P)4Fe4Te4: an intermediate between molecular reagents and solid state products. J. Am. Chem. Soc. 114(8), 3155–3156 (1992)

    Article  CAS  Google Scholar 

  32. B. Choi et al., Ligand control of manganese telluride molecular cluster core nuclearity. Inorg. Chem. 54(17), 8348–8355 (2015)

    Article  CAS  Google Scholar 

  33. M.L. Steigerwald, C.E. Rice, Organometallic synthesis of manganese telluride. Isolation and characterization of [(Et3P)2(CO)3MnTe]2. J. Am. Chem. Soc. 110(13), 4228–4231 (1988)

    Google Scholar 

  34. B. Hessen et al., Hexakis(triethylphosphine)octatelluridohexachromium and a molecule-based synthesis of chromium telluride, Cr3Te4. Inorg. Chem. 32(23), 5165–5169 (1993)

    Article  CAS  Google Scholar 

  35. X. Roy, et al., Nanoscale atoms in solid-state chemistry. Science (Washington, DC, U.S.) 341(6142), 157–160 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Steigerwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steigerwald, M.L. (2021). Pictures are Crucial: Intuition, Electronic Structure, and Reactions in Materials Chemistry. In: Shankar, S., Muller, R., Dunning, T., Chen, G.H. (eds) Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile. Springer Series in Materials Science, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-18778-1_12

Download citation

Publish with us

Policies and ethics