Abstract
This chapter presents some recent advances in surrogate-assisted evolutionary optimization of large problems. By large problems, we mean either the number of decision variables is large, or the number of objectives is large, or both. These problems pose challenges to evolutionary algorithms themselves, constructing surrogates and surrogate management. To address these challenges, we proposed two algorithms, one called kriging-assisted reference vector guided evolutionary algorithm (K-RVEA) for many-objective optimization, and the other called cooperative swarm optimization algorithm (SA-COSO) for high-dimensional single-objective optimization. Empirical studies demonstrate that K-RVEA works well for many-objective problems having up to ten objectives, while SA-COSA outperforms the state-of-the-art algorithms on 200-dimensional single-objective test problems.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Akhtar, T., Shoemaker, C.: Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection. J. Glob. Optim. 64, 17–32 (2015)
Allmendinger, R., Emmerich, M.T.M., Hakanen, J., Jin, Y., Rigoni, E.: Surrogate-assisted multicriteria optimization: Complexities, prospective solutions, and business case. J. Multi-Criteria Decis. Anal. 14, 5–25 (2017)
Arias-Montano, A., Coello, C., Mezura-Montes, E.: Multi-objective airfoil shape optimization using a multiple-surrogate approach. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012)
Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput 19(1), 45–76 (2011)
Branke, J., Schmidt, C.: Faster convergence by means of fitness estimation. Soft Comput. 9(1), 13–20 (2005)
Cheng, R., Jin, Y.: A social learning particle swarm optimization algorithm for scalable optimization. Inf. Sci. 291, 43–60 (2015)
Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20, 773–791 (2016)
Chugh, T., Chakraborti, N., Sindhya, K., Jin, Y.: A data-driven surrogate-assisted evolutionary algorithm applied to a many-objective blast furnace optimization problem. Mater. Manuf. Process. 32(10), 1172–1178 (2017)
Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K.: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 129–142 (2018)
Chugh, T., Sindhya, K., Hakanen, J., Miettinen, K.: Handling computationally expensive multiobjective optimization problems with evolutionary algorithms - A survey. Reports of the Department of Mathematical Information Technology, Series B, Scientific Computing no. B 4/2015, University of Jyvaskyla (2015)
Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation (CEC), vol. 3, p. 1957 (1999)
Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A., et al.: Evolutionary algorithms for solving multi-objective problems, vol. 5. Springer, Berlin (2007)
Dai, C., Wang, Y., Hu, L.: An improved \(\alpha \)-dominance strategy for many-objective optimization problems. Soft Comput. 20(3), 1105–1111 (2016)
Dasgupta, D., Michalewicz, Z.: Evolutionary algorithms in engineering applications. Springer Science & Business Media, Berlin (2013)
Deb, K.: Multi-objective optimization using evolutionary algorithms, vol. 16. Wiley, New York (2001)
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Emmerich, M.T., Giannakoglou, K.C., Naujoks, B.: Single-and multiobjective evolutionary optimization assisted by gaussian random field metamodels. IEEE Trans. Evol. Comput. 10(4), 421–439 (2006)
Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in control systems engineering: A survey. Control. Eng. Pract. 10(11), 1223–1241 (2002)
Forrester, A., Keane, A.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009)
Goel, T., Haftka, R.T., Shyy, W., Queipo, N.V.: Ensemble of surrogates. Struct. Multidiscip. Optim. 33(3), 199–216 (2007)
Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9, 3–12 (2005)
Jin, Y.: Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm Evol. Comput. 1(2), 61–70 (2011)
Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Trans. Evol. Comput. 6(5), 481–494 (2002)
Jin, Y., Sendhoff, B.: Reducing fitness evaluations using clustering techniques and neural network ensembles. In: Genetic and Evolutionary Computation Conference. Lecture Notes in Computer Science 3102, pp. 688–699. Springer, Berlin (2004)
Köppen, M., Vicente-Garcia, R., Nickolay, B.: Fuzzy-pareto-dominance and its application in evolutionary multi-objective optimization. In: Evolutionary Multi-criterion Optimization, pp. 399–412. Springer, Berlin (2005)
Kukkonen, S., Lampinen, J.: Ranking-dominance and many-objective optimization. In: IEEE Congress on Evolutionary Computation. CEC 2007, pp. 3983–3990. IEEE (2007)
Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: A survey. ACM Comput. Surv. (CSUR) 48(1), 13 (2015)
Lim, D., Jin, Y., Ong, Y.S., Sendhoff, B.: Generalizing surrogate-assisted evolutionary computation. IEEE Trans. Evol. Comput. 14(3), 329–355 (2010)
Liu, B., Zhang, Q., Gielen, G.: A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems. IEEE Trans. Evol. Comput. 18(2), 180–192 (2014)
Mckay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 55–61 (2000)
Mitra, K., Majumder, S.: Successive approximate model based multi-objective optimization for an industrial straight grate iron ore induration process using evolutionary algorithm. Chem. Eng. Sci. 66, 3471–3481 (2011)
Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393 (2014)
Parr, J., Keane, A., Forrester, A.I., Holden, C.: Infill sampling criteria for surrogate-based optimization with constraint handling. Eng. Optim. 44(10), 1147–1166 (2012)
Pilát, M., Neruda, R.: ASM-MOMA: Multiobjective memetic algorithm with aggregate surrogate model. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1202–1208. IEEE (2011)
Pilát, M., Neruda, R.: Hypervolume-based local search in multi-objective evolutionary optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 637–644. ACM (2014)
Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) Proceedings of the Parallel Problem Solving from Nature-PPSN X, pp. 784–794. Springer, Berlin (2008)
Rohler, A., Chen, S.: Multi-swarm hybrid for multi-modal optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2012)
Sato, H., Aguirre, H.E., Tanaka, K.: Controlling dominance area of solutions and its impact on the performance of moeas. In: International Conference on Evolutionary Multi-criterion Optimization, pp. 5–20. Springer, Berlin (2007)
Shimoyama, K., Jeong, S., Obayashi, S.: Kriging-surrogate-based optimization considering expected hypervolume improvement in non-constrained many-objective test problems. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 658–665. IEEE (2013)
Singh, P., Couckuyt, I., Ferranti, F., Dhaene, T.: A constrained multi-objective surrogate-based optimization algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 3080–3087. IEEE (2014)
Sun, C., Ding, J., Zeng, J., Jin, Y.: A fitness approximation assisted competitive swarm optimizer for large scale expensive optimization problems. Memetic Comput. 10(2), 123–134 (2018)
Sun, C., Jin, Y., Cheng, R., Ding, J., Zeng, J.: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems. IEEE Trans. Evol. Comput. (2017)
Sun, C., Zeng, J., Pan, J., Xue, S., Jin, Y.: A new fitness estimation strategy for particle swarm optimization. Inf. Sci. 221, 355–370 (2013)
Wang, D.J., Liu, F., Wang, Y.Z., Jin, Y.: A knowledge-based evolutionary proactive scheduling approach in the presence of machine breakdown and deterioration effect. Knowl.-Based Syst. 90, 70–80 (2015)
Wang, H., Jiao, L., Yao, X.: \({\rm Two}\_{\rm Arch2}\): An improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(4), 524–541 (2015)
Wang, H., Jin, Y., Doherty, J.: Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems. IEEE Trans. Cybern. 47(9), 2664–2677 (2017)
Wang, H., Jin, Y., Jansen, J.: Data-driven surrogate-assisted multi-objective evolutionary optimization of a trauma system. IEEE Trans. Evol. Comput. 20(6), 939–952 (2016)
Wang, H., Olhofer, M., Jin, Y.: Mini-review on preference modeling and articulation in multi-objective optimization: Current status and challenges. Complex Intell. Syst. 3(4), 233–245 (2017)
Wang, H., Yao, X.: Corner sort for pareto-based many-objective optimization. IEEE Trans. Cybern. 44(1), 92–102 (2014)
Wiegand, R.P.: An analysis of cooperative coevolutionary algorithms. Ph.D. thesis, George Mason University Virginia (2003)
Zhang, J., Zhou, A., Tang, K., Zhang, G.: Preselection via classification: A case study on evolutionary multiobjective optimization (2017). arXiv:1708.01146
Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14, 456–474 (2010)
Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)
Zhou, Z., Ong, Y.S., Nair, P.B., Keane, A.J., Lum, K.Y.: Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(1), 66–76 (2007)
Zhou, Z., Ong, Y.S., Nguyen, M.H., Lim, D.: A study on polynomial regression and gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm. In: The 2005 IEEE Congress on Evolutionary Computation, 2005, vol. 3, pp. 2832–2839. IEEE (2005)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: International Conference on Parallel Problem Solving from Nature, pp. 832–842. Springer, Berlin (2004)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. In: Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)
Acknowledgements
The research of Tinkle Chugh was supported by the FiDiPro project DeCoMo funded by Tekes: Finnish Funding Agency for Innovation and Natural Environment Research Council [grant number NE/P017436/1].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Chugh, T., Sun, C., Wang, H., Jin, Y. (2020). Surrogate-Assisted Evolutionary Optimization of Large Problems. In: Bartz-Beielstein, T., Filipič, B., Korošec, P., Talbi, EG. (eds) High-Performance Simulation-Based Optimization. Studies in Computational Intelligence, vol 833. Springer, Cham. https://doi.org/10.1007/978-3-030-18764-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-18764-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-18763-7
Online ISBN: 978-3-030-18764-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)