Skip to main content

Reinforcement Learning to Diversify Top-N Recommendation

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11447))

Included in the following conference series:

Abstract

In this paper, we study how to recommend both accurate and diverse top-N recommendation, which is a typical instance of the maximum coverage problem. Traditional approaches are to treat the process of constructing the recommendation list as a problem of greedy sequential items selection, which are inevitably sub-optimal. In this paper, we propose a reinforcement learning and neural networks based framework – Diversify top-N Recommendation with Fast Monte Carlo Tree Search (Div-FMCTS) – to optimize the diverse top-N recommendations in a global view. The learning of Div-FMCTS consists of two stages: (1) searching for better recommendation with MCTS; (2) generalizing those plans with the policy and value neural networks. Due to the difficulty of searching over extremely large item permutations, we propose two approaches to speeding up the training process. The first approach is pruning the branches of the search tree by the structure information of the optimal recommendations. The second approach is searching over a randomly chosen small subset of items to quickly harvest the fruits of searching in the generalization with neural networks. Its effectiveness has been proved both empirically and theoretically. Extensive experiments on four benchmark datasets have demonstrated the superiority of Div-FMCTS over state-of-the-art methods.

L. Zou—Work performed during an internship at JD.com.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.amazon.com.

  2. 2.

    https://www.netflix.com.

  3. 3.

    https://www.jd.com.

  4. 4.

    https://grouplens.org/datasets/movielens/.

References

  1. Adomavicius, G., Kwon, Y.: Maximizing aggregate recommendation diversity: a graph-theoretic approach. In: RecSys, pp. 3–10 (2011)

    Google Scholar 

  2. Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using ranking-based techniques. TKDE 24(5), 896–911 (2012)

    Google Scholar 

  3. Ashkan, A., Kveton, B., Berkovsky, S., Wen, Z.: Optimal greedy diversity for recommendation. In: IJCAI, pp. 173–182 (2015)

    Google Scholar 

  4. Brynjolfsson, E., Hu, Y., Smith, M.D.: Research commentary-long tails vs. superstars: the effect of information technology on product variety and sales concentration patterns. Inf. Syst. Res. 21(4), 736–747 (2010)

    Article  Google Scholar 

  5. Cheng, P., Wang, S., Ma, J., Sun, J., Xiong, H.: Learning to recommend accurate and diverse items. In: WWW, pp. 183–192 (2017)

    Google Scholar 

  6. Clarke, C.L.A., et al.: Novelty and diversity in information retrieval evaluation. In: SIGIR, pp. 659–666 (2008)

    Google Scholar 

  7. Dulac-Arnold, G.: Deep reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679 (2015)

  8. Feige, U.: A threshold of ln n for approximating set cover. JACM 45(4), 634–652 (1998)

    Article  Google Scholar 

  9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: WWW, pp. 173–182 (2017)

    Google Scholar 

  10. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. arXiv (2015)

    Google Scholar 

  11. Hochba, D.S.: Approximation algorithms for NP-hard problems. ACM SIGACT News 28(2), 40–52 (1997)

    Article  Google Scholar 

  12. Xue, H.-J., Dai, X.-Y., Zhang, J., Huang, S., Chen, J.: Deep matrix factorization models for recommender systems. In: IJCAI, pp. 764–773 (2017)

    Google Scholar 

  13. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  16. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS 2001, pp. 556–562 (2001)

    Google Scholar 

  17. Li, J., Ren, P., Chen, Z., Ren, Z., Ma, J.: Neural attentive session-based recommendation. arXiv preprint arXiv:1511.06939 (2015)

  18. Li, S., Kawale, J., Fu, Y.: Deep collaborative filtering via marginalized denoising auto-encoder. In: CIKM, pp. 811–820 (2015)

    Google Scholar 

  19. Liu, T.-Y., et al.: Learning to rank for information retrieval. Found. Trends® Inf. Retr. 3(3), 225–331 (2009)

    Article  Google Scholar 

  20. Lu, Z., Yang, Q.: Partially observable Markov decision process for recommender systems. arXiv preprint arXiv:1608.07793 (2016)

  21. Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational strategies. In: HT 2009, pp. 73–82 (2009)

    Google Scholar 

  22. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI, pp. 1097–1101 (2013)

    Google Scholar 

  23. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  24. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  25. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000 (2007)

    Google Scholar 

  26. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS, pp. 1257–1264 (2007)

    Google Scholar 

  27. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: ICML, pp. 791–798 (2007)

    Google Scholar 

  28. Shani, G., Heckerman, D., Brafman, R.I.: An MDP-based recommender system. JMLR 6, 1265–1295 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  30. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550, 354–360 (2017)

    Article  Google Scholar 

  31. Strub, F., Mary, J.: Collaborative filtering with stacked denoising autoencoders and sparse inputs. In: NIPS, pp. 111–112 (2015)

    Google Scholar 

  32. Sunehag, P., Evans, R., Dulac-Arnold, G., Zwols, Y., Visentin, D., Coppin, B.: Deep reinforcement learning with attention for slate Markov decision processes with high-dimensional states and actions. arXiv preprint arXiv:1512.01124 (2015)

  33. Szpektor, I., Maarek, Y., Pelleg, D.: When relevance is not enough: promoting diversity and freshness in personalized question recommendation. In: WWW, pp. 173–182 (2013)

    Google Scholar 

  34. den Oord, A.V., Dieleman, S., Schrauwen, B.: Deep content-based music recommendation. In: NIPS, pp. 2643–2651 (2015)

    Google Scholar 

  35. Wang, H., Wang, N., Yeung, D.-Y.: Collaborative deep learning for recommender systems. In: SIGKDD, pp. 1235–1244 (2015)

    Google Scholar 

  36. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

    MATH  Google Scholar 

  37. Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders for top-n recommender systems. In: WSDM, pp. 153–162 (2016)

    Google Scholar 

  38. Xia, L., Xu, J., Lan, Y., Guo, J., Zeng, W., Cheng, X.: Adapting Markov decision process for search result diversification. In: SIGIR, pp. 535–544 (2017)

    Google Scholar 

  39. Yue, Y., Joachims, T.: Interactively optimizing information retrieval systems as a dueling bandits problem. In: ICML, pp. 1201–1208 (2009)

    Google Scholar 

  40. Zheng, Y., Tang, B., Ding, W., Zhou, H.: A neural autoregressive approach to collaborative filtering. In: ICML, pp. 764–773 (2016)

    Google Scholar 

  41. Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: WWW, pp. 22–32 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, L., Xia, L., Ding, Z., Yin, D., Song, J., Liu, W. (2019). Reinforcement Learning to Diversify Top-N Recommendation. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds) Database Systems for Advanced Applications. DASFAA 2019. Lecture Notes in Computer Science(), vol 11447. Springer, Cham. https://doi.org/10.1007/978-3-030-18579-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18579-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18578-7

  • Online ISBN: 978-3-030-18579-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics