Skip to main content

Huygens Synchronization Over Distributed Media—Structure Versus Complex Behavior

  • Chapter
  • First Online:
Structural Methods in the Study of Complex Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 482))

Abstract

This analysis is concerned with Huygens synchronization over distributed media—vibrating strings or LC transmission lines. If e.g., two oscillators with lumped parameters i.e., described by ordinary differential equations, which display self sustained oscillations, are coupled to some distributed medium, they interact in function of the structural properties of the resulting system. If this medium has infinite length then, according to the structural properties of the difference operator describing propagation, either synchronization with the external frequency or some “complex behavior” can occur. If the coupling has a finite length, again the qualitative properties are determined by the structure of the aforementioned difference operator: either the self sustained oscillations are quenched, the system approaching asymptotically a stable equilibrium (opposite of the Turing coupling of two “cells” that is lumped oscillators) or again the aforementioned “complex behavior” can occur. We state finally the conjecture that this “complex behavior” is in fact some almost periodic oscillation and not a chaotic behavior. It is worth mentioning that the two types of qualitative behavior are in connection with the physical nature of the considered systems. Specifically, the difference operator is strongly stable for electrical systems and critically stable for mechanical systems. It is this aspect that explains proneness to standard or “complex” behavior. However, if the aforementioned conjecture will not be disproved, the difference between the corresponding oscillatory behaviors will consist only in the contents of harmonics given by the Fourier series attached.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abolinia, V.E., Myshkis, A.D.: Mixed problem for an almost linear hyperbolic system in the plane (in Russian). Mat Sb. 50(92), 423–442 (1960)

    MathSciNet  Google Scholar 

  2. Amerio, L., Prouse, G.: Almost-Periodic Functions and Functional Equations. In: The University Series in Higher Mathematics. Van Nostrand Reinhold, New York, Cincinnati, Toronto, London, Melbourne (1971)

    Google Scholar 

  3. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Dover Publications, New York (1966)

    MATH  Google Scholar 

  4. Bellman, R.E., Cooke, K.L.: Differential difference equations. In: Mathematics in Science and Engineering, vol. 6. Academic Press, New York (1963)

    Google Scholar 

  5. Blekhman, I.I., Fradkov, A.L., Nijmeijer, H., Pogromsky, A.Y.: On self-synchronization and controlled synchronization. Syst. Control. Lett. 31, 299–306 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boas, R.P.: Entire functions. In: Pure and Applied Mathematics, vol. 5. Academic Press, New York (1954)

    Google Scholar 

  7. Bogolyubov, N.N., Mitropol’skii, Y.A.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Fizmatgiz, Moscow USSR (1961). (in Russian)

    Google Scholar 

  8. Bulgakov, B.V.: Oscillations. Gostekhizdat, Moscow USSR (1954). (in Russian)

    Google Scholar 

  9. Cesari, L.: Asymptotic behavior and stability problems in ordinary differential equations, 2nd edn. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 16. Springer, Berlin (1963)

    Google Scholar 

  10. Četaev, N.G.: On the stable trajectories of the dynamics (Russian). Sci. Pap. Kazan Aviat. Inst. 4(5), 3–18 (1936a)

    Google Scholar 

  11. Četaev, N.G.: Stability and the classical laws (Russian). Sci. Pap. Kazan Aviat. Inst. 4(6), 3–5 (1936b)

    Google Scholar 

  12. Cooke, K.: A linear mixed problem with derivative boundary conditions. In: Sweet, D., Yorke, J. (eds.) Seminar on Differential Equations and Dynamical Systems (III). Lecture Series, vol. 51, pp. 11–17. University of Maryland, College Park (1970)

    Google Scholar 

  13. Cooke, K.L., Krumme, D.W.: Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations. J. Math. Anal. Appl. 24, 372–387 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  14. Corduneanu, C.: Almost Periodic Functions, 2nd edn. AMS Chelsea Publishing, New York (1989)

    MATH  Google Scholar 

  15. Corduneanu, C.: Almost Periodic Oscillations and Waves. Springer, New York (2009)

    Book  MATH  Google Scholar 

  16. Dickson, D.G.: Expansions in series of solutions of linear difference- differential and infinite order differential equations with constant coefficients. In: Memoirs of the American Mathematical Society, vol. 23. AMS Publications, Providence RI, USA (1957)

    Article  MathSciNet  Google Scholar 

  17. Edelman, K., Gendelman, O.V.: Dynamics of self-excited oscillators with neutral delay coupling. Nonlinear Dyn. 72(3), 683–694 (2013)

    Article  MathSciNet  Google Scholar 

  18. Gromova, P.S.: Stability of solutions of nonlinear equations of neutral type in an asymptotically critical case (in Russian). Matem zametki 1(6), 715–726 (1967)

    Google Scholar 

  19. Gromova, P.S., Zverkin, A.M.: About the trigonometric series whose sum is a continuous unbounded on the real axis function—solution of an equation with deviated argument (in Russian). Differ Uravn. 4(10), 1774–1784 (1968)

    MATH  Google Scholar 

  20. Halanay, A., Răsvan, V.: Applications of Liapunov methods in stability. In: Mathematics and Its Applications, vol. 245. Kluwer Academic Publishers, Dordrecht (1993)

    Google Scholar 

  21. Halanay, A.: Invariant manifolds for systems with time lags. In: Hale, J.K., LaSalle, J.P. (eds.) Differential Equations and Dynamical Systems, pp. 199–213. Academic Press, New York (1967)

    Google Scholar 

  22. Halanay, A., Răsvan, V.: Almost periodic solutions for a class of systems described by delay differential and difference equations. J. Nonlinear Anal. Theory Methods Appl. 19(1), 197–206 (1977)

    Article  MATH  Google Scholar 

  23. Hale, J.K., Lunel, S.V.: Introduction to functional differential equations. In: Applied Mathematical Sciences, vol. 99. Springer International Edition (1993)

    Google Scholar 

  24. Hale, J.K.: Coupled oscillators on a circle. Resenhas IME-USP 1, 441–457 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Hale, J.K.: Diffusive coupling, dissipation and synchronization. J. Dyn. Differ. Equ. 9, 1–52 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hale, J.K., Martinez-Amores, P.: Stability in neutral equations. J. Nonlinear Anal. Theory Methods Appl. 1, 161–172 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  28. Kolesov, A.Y., Mishchenko, E.F., Rozov, H.N.: Asymptotic methods for the analysis of periodic solutions of nonlinear hyperbolic equations. In: Proceedings of the Steklov Institute of Mathematics, vol. 222. Nauka, Moscow, Russia (1998)

    Google Scholar 

  29. Kurzweil, J.: Invariant manifolds for flows. In: Hale, J.K., LaSalle, J.P. (eds.) Differential Equations and Dynamical Systems, pp. 431–468. Academic Press, New York (1967)

    Google Scholar 

  30. Langer, R.E.: On the zeros of exponential sums and integrals. Bull. Am. Math. Soc. 37, 213–239 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lepri, S., Pikovsky, A.: Nonreciprocal wave scattering on nonlinear string-coupled oscillators. Chaos 24(043119), 1–9 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Levin, B.Y.: Zeros Distribution for the Entire Functions. Gostekhizdat, Moscow USSR (1956). (in Russian)

    Google Scholar 

  33. Liénard, A.: Étude des oscillations entretenues. Revue générale d’Électricité 23(901–912), 946–954 (1928)

    Google Scholar 

  34. Malkin, I.G.: Some Problems in the Theory of Nonlinear Oscillations. Gostekhizdat, Moscow USSR (1956). (in Russian)

    MATH  Google Scholar 

  35. Marchenko, Y.I., Rubanik, V.P.: Mutual synchronization of molecular oscillators (in russian). Izvestya VUZ USSR Radiofizika 8(4), 679–687 (1965)

    Google Scholar 

  36. Minorsky, N.: Introduction to Non-Linear Mechanics. In: Edwards, J.W. (ed.) Ann Arbor, USA (1947)

    Google Scholar 

  37. Neymark, Y.I.: Dynamical Systems and Controlled Processes. Nauka, Moscow USSR (1978)

    Google Scholar 

  38. Pikovsky, A.: The simplest case of chaotic wave scattering. Chaos 3(4), 505–506 (1993)

    Article  MathSciNet  Google Scholar 

  39. Pikovsky, A., Rosenblum, M.: Dynamics of globally coupled oscillators: progress and perspectives. Chaos 25(097616), 1–11 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, UK (2001)

    Book  MATH  Google Scholar 

  41. Răsvan, V., Danciu, D., Popescu, D.: On Huygens synchronization. application to van der Pol oscillators with distributed couplings. In: 18th International Carpathian Control Conference (ICCC), pp. 521–526. IEEE Publications (2017)

    Google Scholar 

  42. Răsvan, V., Danciu, D., Popescu, D.: Qualitative properties of a model of coupled drilling oscillations. In: 22nd International Conference on System Theory Control and Computing (ICSTCC), pp. 99–104. IEEE Publications (2018)

    Google Scholar 

  43. Răsvan, V., Niculescu, S.I.: Oscillations in lossless propagation models: a Liapunov–Krasovskii approach. IMA J. Math. Control. Inf. 19(1–2), 157–172 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Răsvan, V.: Augmented validation and a stabilization approach for systems with propagation. In: Miranda, F. (ed.) Systems Theory: Perspectives, Applications and Developments. Systems Science Series, vol. 1, pp. 125–170. Nova Science Publishers, New York (2014)

    Google Scholar 

  45. Răsvan, V.: Functional differential equations of lossless propagation and almost linear behavior (plenary talk). In: IFAC Proceedings Volumes. 6th Workshop on Time Delay Systems, pp. 138–150. Elsevier (2006)

    Google Scholar 

  46. Răsvan, V.: Stability theory. Concepts. Methods. Applications (in Romanian). Editura Ştiinţifică şi Enciclopedică, Bucharest, Romania (1987)

    Google Scholar 

  47. Răsvan, V.: Stable and critical cases in Huygens synchronization. Bull. Math. Soc. Sci Math. Roumanie 61(109)(4), 461–471 (2018b)

    Google Scholar 

  48. Răsvan, V.: Synchronization versus oscillation quenching. In: 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), pp. 463–468. IEEE Publications (2017)

    Google Scholar 

  49. Răsvan, V.: The stability postulate of NG Cetaev and the augmented model validation. IFAC-PapersOnLine 50(1), 7450–7455 (2018a)

    Article  Google Scholar 

  50. Răsvan, V.: Absolute stability of a class of control systems described by functional differential equations of neutral type. In: Janssens, P., Mawhin, J., Rouche, N. (eds.) Equations Differentielles et Fonctionnelles Non Lineaires, pp. 381–396. Hermann, Paris (1973b)

    Google Scholar 

  51. Răsvan, V.: Absolute stability of a class of control systems described by coupled delay-differential and difference equations. Rev. Roumaine Sci. Techn. Serie Electrotechn. Energ. 18(2), 329–346 (1973a)

    Google Scholar 

  52. Răsvan, V.: Some results concerning the theory of electrical networks containing lossless transmission lines. Rev. Roumaine Sci. Techn. Serie Electrotechn. Energ. 19(4), 595–602 (1974)

    Google Scholar 

  53. Reissig, R., Sansone, G., Conti, R.: Qualitative Theorie nichtlinearer Differentialgleichungen. Edizioni Cremonese, Roma (1963)

    MATH  Google Scholar 

  54. Rubanik, V.P.: Delay influence over the process of synchronization of self sustained oscillations by an external periodic force (in Russian). Izvestya VUZ USSR Radiofizika 5, 561–571 (1962)

    Google Scholar 

  55. Thomson, W., Tait, P.G.: Treatise on Natural Philosophy. Oxford University Press, Oxford, UK (1867)

    MATH  Google Scholar 

  56. Tikhonov, A.N., Samarskii, A.A.: Equations of the Mathematical Physics. Nauka, Moscow USSR (1977). (in Russian)

    MATH  Google Scholar 

  57. Wiener, N.: Cybernetics, or Control and Communication in the Animal and the Machine, 2nd edn. MIT Press, Cambridge, USA (1967)

    Google Scholar 

  58. Yakubovich, V.A.: The method of the matrix inequalities in the stability theory of nonlinear controlled systems i. absolute stability of the forced oscillations (in Russian). Avtom i telemekh 25, 1017–1029 (1964)

    Google Scholar 

  59. Zverkin, A.M.: Series expansion of the solutions of linear differential difference equations i: quasi-polynomials (in russian). In: El’sgol’ts. L.E., Zverkin, A.M. (eds.) Papers of the Seminar on the theory of differential equations with deviated argument, vol. 3, pp. 3–39. University of Peoples’ Friendship, Moscow USSR (1965)

    Google Scholar 

  60. Zverkin, A.M.: Series expansion of the solutions of linear differential difference equations ii: series expansions (in russian). In: El’sgol’ts, L.E., Zverkin, A.M. (eds.) Papers of the Seminar on the theory of differential equations with deviated argument, vol. 4, pp. 3–50. University of Peoples’ Friendship, Moscow USSR (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Răsvan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Răsvan, V. (2020). Huygens Synchronization Over Distributed Media—Structure Versus Complex Behavior. In: Zattoni, E., Perdon, A., Conte, G. (eds) Structural Methods in the Study of Complex Systems. Lecture Notes in Control and Information Sciences, vol 482. Springer, Cham. https://doi.org/10.1007/978-3-030-18572-5_8

Download citation

Publish with us

Policies and ethics