Soil Pollution

Part of the World Soils Book Series book series (WSBS)


Soils contaminated from water or air and by artificially applied toxic substances from pesticides, as well as mineral fertilizers, accumulate toxic elements, including heavy metals, having an extremely adverse impact on the living organisms. Among all kinds of economic activities, mining is the main source of pollution that deteriorates the agrophysical properties of soils and geoecological conditions in whole. The main ecological catastrophic zones in Georgia are discussed, related to the mining industry—Bolnisi metallogenic province (Kvemo Kartli Region) and Chiatura-Zestaponi manganese province (Imereti Region). Besides, pollution of soils and water with pesticides (chlorine-organic compounds) near the former chemical warehouses is considered.


Soil pollutants Contaminated soils Heavy metals Mining industry Pesticides 


  1. Ainsworth CC, Pilon JL, Grassman PL, Sluys WGVD (1994) Cobalt, cadmium and lead sorption to hydrous iron oxide: residence time effect. Soil Sci Soc Am J 58:1615–1623CrossRefGoogle Scholar
  2. Alloway BJ, Jackson AP, Morgan H (1990) The accumulation of Cd by vegetables grown on soils contaminated from variety of sources. Sci Total Environ 91:223–236CrossRefGoogle Scholar
  3. Amberger A (1996) Pflanzenernährung, 4th edn. UTB, Stuttgart Bes C, Mench MJ (2008) Remediation of copper contaminated topsoils from a wooden treatment facility using in-situ stabilization. Environ Pollut 156:1–11Google Scholar
  4. BBodSchV (1999) Bundes Bodenschutz und Altlastenverordnung 12 July 1999, Bundesgesetzblatt, Bundesanzeigerverlagsgesellschaft mbH, KölnGoogle Scholar
  5. Brümmer GW (2010) Böden als Pflanzenstandort. In: Schachtschabel et al (eds) Lehrbuch der Bodenkunde, 16th edn. Spektrum, Heidelberg/Berlin, pp 379–448Google Scholar
  6. Chlopecka A, Adriano DC (1997) Influence of zeolite, apatite and Fe-oxide on Cd and Pb uptake by crops. Sci Total Environ 207:195–206CrossRefGoogle Scholar
  7. Commission regulation (EC) No 466/2006. Off J Eur Union Dec 2006 LuxemburgGoogle Scholar
  8. Contin M, Mondini C, Leita L, De Nobili M (2007) Enhanced soil toxic metal fixation in iron(hydr)oxides by redox cycles. Geoderma 140:164–175CrossRefGoogle Scholar
  9. DIN 11466 (1995) Soil quality—extraction of trace elements soluble in aqua regia. Beuth Verlag GmbH, Berlin, Deutsches Institut für NormungGoogle Scholar
  10. DIN 19684–6: 1977–02 (1977) Methods of soil investigation for agricultural engineering—chemical laboratory tests—part 6: determination of iron soluble in oxalate solution. Beuth Verlag GmbH, Berlin, Deutsches Institut für NormungGoogle Scholar
  11. DIN 19730: 2009–07 (2009) Soil quality—extraction of trace elements from soil using ammonium nitrate solution. Beuth Verlag GmbH, Berlin, Deutsches Institut für NormungGoogle Scholar
  12. DIN ISO 10390 2005–12 (2005) Soil quality—determination of pH. Beuth Verlag GmbH, Berlin, Deutsches Institut für NormungGoogle Scholar
  13. DIN ISO 10693 1997–05 (1997) Soil quality—determination of carbonate content—volumetric method. Beuth Verlag GmbH, Berlin, Deutsches Institut für NormungGoogle Scholar
  14. DIN ISO 11260 1997–05 (1997) Soil quality—determination of effective cation exchange capacity and base saturation level using barium chloride solution. Beuth Verlag GmbH, Berlin, Deutsches Institut für NormungGoogle Scholar
  15. DIN EN ISO 14688–1:2003–01 (2003) Geotechnical investigation and testing—identification and classification of soil—part 1: identification and description. Beuth Verlag GmbH, Berlin, Deutsches Institut für NormungGoogle Scholar
  16. Felix-Henningsen P, Urushadze TF, Narimannidze EI, Wichmann L, Steffens D, Kalandadze B (2007) Heavy metal pollution of soils and food crops due to mining wastes in an irrigation district south of Tbilisi, eastern Georgia. Annal Agrarian Sci 5(3):11–27Google Scholar
  17. Ford RG (2007) Structural dynamics of metal partitioning to mineral surfaces. In: Hamon R, Mc Laughlin M, Lombi E (eds) Natural attenuation of trace element availability. Taylor and Francis, New York, pp 73–88Google Scholar
  18. Friesl W, Horak O (2006) Immobilisierung von Schwermetallen (Metalloide) oberflächennaher, großflächiger Kontaminationen—Technischer Leitfaden. ARC Seibersdorf Research GmbH, SeibersdorfGoogle Scholar
  19. Friesl W, Friedl J, Platzer K, Horak O, Gerzabek MH (2006) Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch pot and field experiments. Environ Pollut 144:40–50CrossRefGoogle Scholar
  20. Guo G, Zhou Q, Ma LQ (2006) Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review. Environ Monit Assess 116:513–528CrossRefGoogle Scholar
  21. Hanauer T, Shnell S, Steffens D, Kalandadze B, Navrozashvili L, Felix-Henningsen P (2011) In situ remediation of Cd, Cu and Zn contaminated topsoils by different amendments, EGU General Assembly, vol 13. XY488 EGU2011, pp 155–159Google Scholar
  22. Hanauer T, Felix-Henningsen P, Shteffens D, Kalandadze B, Navrozashvili L, Urushadze T (2011a) In situ stabilization of metals (Cu, Cd und Zn) in contaminatedsoils in the region of Bolnisi, Georgia. Plant Soil 341:193–208CrossRefGoogle Scholar
  23. Hartley W, Lepp NW (2008) Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci Total Environ 390:35–44CrossRefGoogle Scholar
  24. Janssen RPT, Peijnenburg WJGM, Posthuma L, Magt VDH (1997) Equilibrium partitioning of heavy metals in Dutch fields. I. Relationship between metal partition coefficients and soil characteristics. Env Tox Chem 16:2470–2488CrossRefGoogle Scholar
  25. Kabata-Pendyas A, Pendyas H (1989) Microelements in soils and plants. Mir, MoscowGoogle Scholar
  26. Kalandadze B, Felix-Henningsen P (2014) Pollution of irrigation soils and cultural plants with heavy metals in the basin of the river Kvirila due to mining industry (West Georgia). Eurasian Soil Congress Abs, Istambul, TurkeyGoogle Scholar
  27. Kalandadze B, Matchavariani L (2011) Impact of heavy metals on soils and plants in Mashavera river lowland, Georgia. In: Proceedings of international conference “soil, plant and food interactions. Mendel University, Brno, Chech Rep., 6–8 Sept, pp 587–598Google Scholar
  28. Kalandadze B, Trapaidze V (2015) Quantitative evaluation of the impact of heavy metals on soil productivity on the example of ore-dressing and processing production in east Georgia, SGEM, vol 1I, soils, forest ecosystems, marine and ocean ecosystems, pp 271–278Google Scholar
  29. Kalandadze B, Hanauer T, Felix-Henningsen P, Urushadze T, Narimanidze E, Steffens D (2009) Mining and agriculture in the Mashavera valley (South-East Georgia)—a land use conflict with severte consequences. Biol J Armenia LXI 2:22–29. National Academy of Sciences of the Republic of ArmeniaGoogle Scholar
  30. Kandeler E (2010) Bodenorganismen und ihr Lebensraum. In: Schachtschabel et al (eds) Lehrbuch der Bodenkunde, 16th edn. Spektrum, Heidelberg/Berlin, pp 83–119Google Scholar
  31. Khatisashvili G, Matchavariani L, Gakhokidze R (2015) Improving phytoremediation of soil polluted with oil hydrocarbons in Georgia. In: Chapter 19 in book “soil remediation and plants: prospects and challenges”. Elsevier—Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, pp 547–569Google Scholar
  32. Knox AS, Seaman J, Adriano DC (2000) Chemostabilization of metals in contaminated soils. In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stottermeier U (eds) Bioremediation of contaminted soils. Marcel Dekker, New York, Basel, pp 811–836Google Scholar
  33. Kovda V, Rozanov B (1988). Soils science. High school, Moscow (Pochvovedenie. Vishaya shkola, Moskva)Google Scholar
  34. Kretzschmar R (2010) Chemische Eigenschaften. In: Schachtschabel et al (eds) Lehrbuch der Bodenkunde, 16th edn. Spektrum, Heidelberg/Berlin, pp 122–170Google Scholar
  35. Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C (2006) Assessment of zerovalent iron for stabilization of chromium, copper and arsenic in soil. Environ Pollut 144:62–69CrossRefGoogle Scholar
  36. Lezhava VV, Matchavariani LG (1983) Preventing the adverse effects of pesticides on the environment. Georgian scientific-research institute for scientific-technical information, overview information (GSRISTI, OI), vol 3, issue 3, pp 44 (Predotvrashenie otritsatelnogo deistvia estitsidov na okruzhaiushuyu sredu. GruzNIINTI, OI)Google Scholar
  37. Lombi E, Zhao F-J, Wieshammer G, Zhang G, McGrath SP (2002) In situ fixation of metals in soils using bauxite residue: biological effects. Environ Pollut 118:445–452CrossRefGoogle Scholar
  38. Marschner B, Müller I, Stolz R, Stempelmann I (2010) Immobilisierung von Schwermetallen in Gartenböden. Bodenschutz 02:34–41Google Scholar
  39. Matchavariani L, Kalandadze B (2012) Pollution of soils by heavy metals from irrigation near mining region of Georgia. vol. Forum Geogr XI(2):127–137CrossRefGoogle Scholar
  40. Matchavariani L, Kalandadze B, Lagidze L, Gokhelishvili N, Sulkhanishvili N, Paichadze N, Dvalashvili G (2015) Soil quality changes in response to their pollution of heavy metals in Georgia. J Environ Biol Spec Issue 36(1):85–91Google Scholar
  41. McBride MB (1989) Reactions controlling heavy metals solubility in soils. Adv Soil Sci 10:1–56Google Scholar
  42. Mench M, Manceau A, Vangronsveld J, Clijsters H, Mocquot B (2000) Capacity of soil amendments in lowering the phytoavailability of sludge-born zinc. Agronomie 20:383–397CrossRefGoogle Scholar
  43. Müller I (2000) Einfluss eisenoxidhaltiger Bodenzusätze auf die Mobilität von Schwermetallen in kontaminierten Böden. Dissertation, Boden und Landschaft 27. Justus Liebig UniversityGoogle Scholar
  44. Nurzhanova A, Kalugin S, Zhambakin K (2013) Obsolete pesticides and application of colonizing plant species for remediation of contaminated soil in Kazakhstan. Environ Sci Pollut Res 20:2054–2063CrossRefGoogle Scholar
  45. Saet Yu, Basharkevich I, Revich B (1982) Methodical recommendations about a geochemical estimation of sources of environmental pollution. IMGREGoogle Scholar
  46. Sastre J, Hernadez E, Rodriguez R, Alcobe X, Vidal M, Rauret G (2004) Use of sorption and extraction tests to predict the dynamics of the interaction of trace elements in agricultural soils contaminated by a mine tailing accident. Sci Total Environ 329:261–281CrossRefGoogle Scholar
  47. Sauerbeck D (1982) Welche Schwermetallgehalte in Pflanzen dürfen nicht überschritten werden, um Wachstumsbeeinträchtigungen zu vermeiden? Landwirtsch Forsch Special Edition 39:108–129Google Scholar
  48. Sayed MAHA (2006) Dynamik von Schwermetallen in belasteten schwarzerdeartigen Böden unter Bewässerung in Südost–Georgien. Dissertation, Boden und Landschaft 48, Justus Liebig UniversityGoogle Scholar
  49. Schatz M, Babaev E, Kalandadze B, Beuhm L, Deuring A (2015) Persistent organic pollutants in transcaucasian soils and sediments—the invisible heritage of former Soviet Union. In: 15th EuCheMS international conference on chemistry and the environment, Leipzig, GermanyGoogle Scholar
  50. VDLUFA (1976) Die chemische Untersuchung von Futtermitteln, 3. print. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten, SpeyerGoogle Scholar
  51. Stahr K (2010) Anorganische Komponenten der Böden-Minerale und Gesteine. In: Schachtschabel et al (eds) Lehrbuch der Bodenkunde, 16th edn. Spektrum, Heidelberg/Berlin, pp 7–49Google Scholar
  52. Usman ARAU (2004) Soil reclamation and conservation: evaluation of different additives for remediation and quality improvement of soil. Hohenheimer Bodenkundliche Hefte 73:StuttgartGoogle Scholar
  53. Vazhenin I (1987) Methods of definition the microelements in soils and plants. Kolos, MoscowGoogle Scholar
  54. VDLUFA (1991) Methodenhandbuch I. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten, SpeyerGoogle Scholar
  55. VDLUFA (1997) Phosphordüngung nach Bodenuntersuchung und Pflanzenbedarf. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten, DarmstadtGoogle Scholar
  56. Vinogradov AP (1957) Geochemistry of rare and absent-minded chemical elements in soils. ASUSSR, MoscowGoogle Scholar
  57. Wilke B-M (2010) Gefährdung der Bodenfunktionen. In: Schachtschabel et al (eds) Lehrbuch der Bodenkunde, 16th edn. Spektrum, Heidelberg/Berlin, pp 449–520Google Scholar
  58. Zeien H (1995) Chemische Extraktion zur Bestimmung der Bindungsformen von Schwermetallen in Böden Bonner. Dissertation, Bodenkundliche Abhandlungen, vol 17. Rheinische Friedrichs Wilhelm UniversityGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Exact & Natural Sciences, Department of Soil GeographyIvane Javakhishvili Tbilisi State UniversityTbilisiGeorgia

Personalised recommendations