Advertisement

Soil Erosion

Chapter
  • 178 Downloads
Part of the World Soils Book Series book series (WSBS)

Abstract

As the data suggest, 224 thousand ha of arable lands and 569 thousand ha of pastures and hay meadows are eroded. 95 thousand ha out of 162 thousand ha of eroded melioration lands is slightly eroded, 51 thousand ha is averagely eroded and 16 thousand ha is strongly eroded. The eroded areas of melioration lands in East Georgia are 3 times more than those in West Georgia, and slightly eroded areas are 5 times more and the averagely eroded areas are twice as more. 76 thousand ha of melioration land in Georgia is damaged due to the deflation processes, with 30 thousand ha being slightly deflated, 22 thousand ha being averagely deflated, and 24 thousand ha being strongly deflated. The studies evidence that 1004 thousand ha of 1134 thousand ha of melioration fund of Georgia is hazardous in respect of the development of erosive processes, with 289 thousand ha being slightly erosive hazardous, 50 thousand ha being averagely erosive hazardous, while 665 thousand ha is extremely erosive hazardous. Among them, 12 thousand ha of irrigation lands is hazardous in respect to erosion.

Keywords

Soil erosion Erosion by water Erosion by wind Erosive hazardous 

References

  1. Archer SG (1956) Soil conservation. University of Oklahoma Press, NormanGoogle Scholar
  2. Ayres QC (1936) Soil erosion and its control. McGraw-Hill, New York, USA, p 365Google Scholar
  3. Bennett HH, Chaplin WR (1928) Soil erosion—a national menace, U.S. Department of Agriculture, Circular 33Google Scholar
  4. Davis WM (1898) Physical geography, BostonGoogle Scholar
  5. Davis WM (1902) Elementary physical geography, BostonGoogle Scholar
  6. Flanagan DC, Laflen Elliot WJ, Meyer CR, Nearing MA (1997) WEPP—predicting erosion by water using a process-based model. J Soil Water Conserv 52(2):96–102Google Scholar
  7. Fryrear DW, Ali Saleh JD, Bilbro HM, Schomberg H, Stout JE, Zobeck TM (1998) RWEQ: improved erosion by wind technology. J Soil Water Conserv 55:183–189Google Scholar
  8. Gogichaishvili G (2007) Quantitative assessment of soil erodibility on the ameliorated lands in Georgia. Eurasian Soil Sci 40(11):1227–1232CrossRefGoogle Scholar
  9. Gogichaishvili G (2012) Erodibility of Arable soils in Georgia during the period of storm runoff. Eurasian Soil Sci 45(2):197–201CrossRefGoogle Scholar
  10. Gogichaishvili G (2016) Soil erosion in river basins of Georgia. Eurasian Soil Sci 49(6):696–704CrossRefGoogle Scholar
  11. Green T, Houk D (1980) The resuspension of underwater sediment by rain. Sedimentology 27:607–610CrossRefGoogle Scholar
  12. Hobs PV, Kezweeny AJ (1967) Splashing of a water drop. Science 155:1112–1114CrossRefGoogle Scholar
  13. Horton R (1948) Erosional development of rivers and catchments. Publishing House, M: Geografgiz, p 158 (Khorton R. Erozionnoe razvitie rek i vodosbornikh basseinov. 1948, M: Geografgiz)Google Scholar
  14. Hudson NW (1971) Soil conservation. Batsford, LondonGoogle Scholar
  15. Hudson N (1974) Soil protection and erosion control. Publishing House “Misl”, Moscow (Okhrana pochvi i borba s eroziei), p 400Google Scholar
  16. Instructions for the determination of computed hydrological characteristics in the design of anti-erosion measures in the European Territory of the USSR (1979) Leningrad, Publishing House Gidrometizdat (Instruktsia po opredeleniu raschotnikh gidrologicheskikh kharakteristik pri proektirovanii protivoerozionnikh meropriatii na Evropeiskoi Territorii SSSR), p 60Google Scholar
  17. Kohnke H, Bertrand A (1959) Soil conservation. McGraw-Hill, New York-Toronto-LondonGoogle Scholar
  18. Kozmenko A (1909) Failure, landslide and erosion formations of the North-Eastern part of the Novosilsky district of the Tula province. Geography Book 3–4Google Scholar
  19. Kozmenko AC (1928) Struggle against ravines and moistening of fields in the Tula province (Borba s ovragami i uvlazhnenie poley v Tulskoy gubernii)Google Scholar
  20. Larionov GA (1973) Foreign experience in assessing the potential danger of erosion. In collection, Assessment and mapping of erosion-hazardous and deflationary dangerous lands (Zarubejnii opit otsenki potentsialnoi opasnosti erozii. V sb., Otsenka I kartirovanie erozionnoopasnikh i defliatsion-noopasnikh zemel. M., Izd. MGU). Publishing House of Moscow State University, Moscow, pp 38–46Google Scholar
  21. Laws JO (1940) Recent studies in raindrops and erosion. Agric Eng 21:431–433Google Scholar
  22. Lazarevich R (1973) Erosion in the SFD of Yugoslavia (in Serbian), Zbornik radova 12, 105–123, Institut za šumarstvo I industriju, BeogtadGoogle Scholar
  23. Lopatin GV (1952) River sediments of USSR, Geograpgizdat (Nanosi rek SSSR, Geografizdat)Google Scholar
  24. Makkaveev NI (1953) River bed and erosion in its basin. AS of USSR (Ruslo reki i erozia v eyo basseiyne, AN SSSR)Google Scholar
  25. Makkaveev NI (1971) Stock and channel processes. Texts of lectures for geomorphologists. Publishing House MSU, Moscow, p 115 (Stok b ruslovie protsessi. Teksti lektsii dlz geomorfologov. M., Izd-vo MGU)Google Scholar
  26. Makkaveev NI (1973) Hydraulic typification of erosion process. In the book: soil erosion and channel processes, Issue 3. Publishing House Moscow State University, Moscow, pp 65–77 (Gidravlicheskaia tipizatsia erozionnogo protsesa. 1973, V kn., Erozia pochv i ruslovie protsesi. Vip. 3, M., Izd. MGU)Google Scholar
  27. Mc`Intyre DS (1958) Permeability measurements of soil crusts formed by raindrop impact. Soil Sci 85(4):185–189Google Scholar
  28. Methodical recommendations on the forecast of water (rain) erosion (1978) Publishing House VASKHNIL, GruzNIIGIM, (Metodicheskie rekomendatsii po prognozu vodnoi (dozdevoi) erozii), Moscow, p 60Google Scholar
  29. Methodological guidelines for the definition of land reclamation fund. Section: Erosion-deflationary justification (1982) Ministry of Land Reclamation and Water Economy of the USSR, “Soyuz-vodproekt”, Specialized Department for Research and Research Institute “Soyuzg-iprovodkhoz”. Scheme of the development of land reclamation and water management of the USSR for the period up to 2000 year. (Metodicheskoe ukazania po opredeleniu meliorativnogo fonda. Razdel: Erozionno-deflatsionnoe obosnovanie. 1982, Ministerstvo melioratsii i vodnogo khoziaistva SSSR, “Soiuz-vodproekt”, Specializirovannoe otdelenie po iziskaniam i issledovaniam instituta “Soiuz-giprovodkhoz”. Skhema razvitia melioratsii i vodnogo khoziaistva SSSR na period do 2000 goda)Google Scholar
  30. Mirtskhulava TSE (1970) Engineering methods for calculating and predicting erosion by water. Publishing House Kolos, Moscow, p 240 (Injenernie metodi raschota i prognoza vodnoi erozii. 1970, M., Izd. Kolos)Google Scholar
  31. Mutchler CK, Hansen LM (1970) Splashing of a water drop at terminal velocity. Science 167:1311–1312CrossRefGoogle Scholar
  32. Mutchler CK, Larson CL (1971) Splash amounts from water drop impact on a smooth surface. Water Res 7:195–200CrossRefGoogle Scholar
  33. Park SW, Mutchler JK, Bubenzer GD (1983) Rainfall characteristics and their relation to splash erosion. Trans of the ASAE (General Edition. St. Joseph, Mich) 26(3):795–804Google Scholar
  34. Penck A (1894) Morphologie der Erdoberfläche, Bd 1–2Google Scholar
  35. Poesen J, Savat J (1981) Detachment and transportation of loos sediments by raindrop splash. Detachability and transportability measurements. Catena 8:19–41CrossRefGoogle Scholar
  36. Salnikov VK (1965) Equation for predicting soil losses due by erosion (Uravnenie dlia predskazania poter pochv v rezultate erozii. Viborochnii perevod s angliiskogo iazika). Selective translation from English. Pub. By Vintish, M, p 20Google Scholar
  37. Shvebs GI (1974) Formation of erosion by water, sediment runoff and their assessment (on the example of Ukraine and Moldova). Leningrad, Publishing House Gidrometizdat, p 184 (Shvebs G.I. Formirovanie vodnoi erozii, stoka nanosov i ikh otsenka (na primere Ukraini i Moldavii). Leningrad, Gidrometizdat)Google Scholar
  38. Siscoe GL, Levin Z (1971) Water-drop-surface—wave interactions. J Geophys Res 76:5112–5116CrossRefGoogle Scholar
  39. Stallings JH (1957) Soil conservation. Englewood Cliffs, New JerseyGoogle Scholar
  40. Tound TP, Painter DJ (1974) The interaction between a raindrop and a shallow body of water. In: First Australian conference on hydraulics and fluid mechanics, Christchurch, New Zeland, pp 96–102Google Scholar
  41. Wischmeier WH, Smith DD (1965) Predicting rainfall-erosion losses from cropland east of the Rocky Mountain. In: Agriculture handbook, vol 282, p 47 (US Dep. Agric., 1965)Google Scholar
  42. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. In: Agriculture handbook, vol 537 (US Dep. Agric., 1978)Google Scholar
  43. Wollny E (1895) Untersuchungen über das Verhalten der atmosphärischen Niederschläge zur Pflanze und Boden. Forschungen aus dem Gebiet der Agriculturphysik 18Google Scholar
  44. Woodruff NP, Sidoway FH (1965) A erosion by wind equation. Soil Soc Amer Proc 29:602–608CrossRefGoogle Scholar
  45. Zaslavsky MN (1979) Soil erosion (Erozia pochv). Publishing House “Misl”, Moscow, p 241Google Scholar
  46. Zaslavsky MN, Larionov GA, Dokudovskaya OG, Tarabrin NP (1981) Map of the erosion index of rainfall in the European territory of the USSR and the Caucasus. In the collection. Erosion of soils and channel processes. 1981, Publishing House of Moscow State University, Moscow. 8, pp 17–30 (Karta erozionnogo indeksa dojdevikh osadkov Evropeiskoi territorii SSSR i Kavkaza. V. sb. Erozia pochv i ruslovie protsesi. M., MGU, vip. 8)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Agrometeorological Division, Department of HydrometeorologyNational Environmental AgencyTbilisiGeorgia

Personalised recommendations