Skip to main content

Reconstruction Procedure for Writing Down the Langevin and Jump-Diffusion Dynamics from Empirical Uni- and Bivariate Time Series

  • Chapter
  • First Online:
  • 1705 Accesses

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In this chapter we present the steps of reconstruction procedure for writing down the Langevin and jump diffusion stochastic dynamical equations for uni- and bivariate time series, sampled with time intervals \(\tau \).

[Type][CrossLinking]The original version of this chapter was revised: Belated correction has been incorporated. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-18472-8_24

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The finite \(\tau \) expansions of the KM conditional moments \(K^{(1)}_i\) and \(K^{(2)}_{ij}\) with known \(D_i^{(1)}(\mathbf{x},t)\) and \(D_{ij}^{(2)}(\mathbf{x},t)\) are

    $$\begin{aligned} K^{(1)}_i= & {} \tau D^{(1)}_i + \frac{\tau ^2}{2} \left( \sum _k D^{(1)}_k \partial _{x_k} D^{(1)}_i \right. \\&\quad \left. + \sum _{kl} D^{(2)}_{kl} \partial _{x_l}\partial _{x_k} D^{(1)}_i\right) + \mathcal {O}(\tau ^3) \end{aligned}$$
    $$\begin{aligned} K^{(2)}_{ij}= & {} 2\tau D^{(2)}_{ij} + \ \tau ^2 \Bigg [ D^{(1)}_i D^{(1)}_j \\&\quad \quad + \sum _k \left( D^{(2)}_{jk} \partial _{x_k} D^{(1)}_i + D^{(2)}_{ik} \partial _{x_k} D^{(1)}_j \right) \\&\quad \quad + \sum _k D^{(1)}_k \partial _{x_k} D^{(2)}_{ij} + \sum _{kl} D^{(2)}_{kl} \partial _{x_l}\partial _{x_k} D^{(2)}_{ij} \Bigg ] \\&+ \ \mathcal {O}(\tau ^3). \end{aligned}$$

    where

    $$\begin{aligned} K^{(1)}_i(\mathbf{x},t,\tau ) = \left\langle \left[ \mathbf{x}(t+\tau ) - \mathbf{x}(t)\right] _i \right\rangle |_{\mathbf{x}(t) = \mathbf{x}} \end{aligned}$$
    $$\begin{aligned} K^{(2)} _{ij}(\mathbf{x},t,\tau ) = \left\langle \left[ \mathbf{x}(t+\tau ) - \mathbf{x}(t)\right] _i \left[ \mathbf{x}(t+\tau ) - \mathbf{x}(t)\right] _j \right\rangle |_{\mathbf{x}(t) = \mathbf{x}} \end{aligned}$$

    where, \(\partial _{x_i} = \partial / \partial x_i\).

  2. 2.

    with \(a^2 - 2 a b + b^2 + 4 c^2 \ne 0\), \(ab-c^2 \ge 0\) and \(c\ne 0\). There are 9 other real solutions for h, l amd k, depending on the values of a, b and c.

  3. 3.

    Now let us consider a discrete stationary process x(t), with unit Markov–Einstein time scale \(t_M=1\) (in units of the data lag). If k is the number of bins needed to precisely represent, or evaluate, the PDF of x(t), the data are partitioned into k bins, with each bin having an equal number of data points. Each bin is represented by a node of the equivalent complex network of the series, with k being the number of the nodes in the network. Nodes i and j are linked if as the time increases the value of x(t) in bin i changes to that in bin j in one time step. A weight \(w_{ij}\) is attributed to a link ij, which is the number of times that a given value of x(t) changes from its value in bin i to bin j in one time step, and is normalized at each node. The transition matrix \(\mathbf{W}=[w_{ij}]\) is, in general, not symmetric. Thus, the network is both directed and weighted. For some time series with a finite Markov–Einstein time scale \(t_M>1\), one can construct the transition matrix with entries given by \(p[x(t)|x(t-t_M)]\), and attribute to each node a set of arrays of data with length \(t_M\), see [16] for more details.

References

  1. L. Rydin Gorjão, F. Meirinhos, Python KM, a Python package to calculate Kramers–Moyal coefficients, https://github.com/LRydin/KramersMoyal

  2. J. Prusseit, K. Lehnertz, Phys. Rev. E 77, 041914 (2008)

    Article  ADS  Google Scholar 

  3. H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989)

    Book  Google Scholar 

  4. F. Lenz, Statistical analysis and stochastic modelling of foraging Bumblebees, Doctoral thesis, Queen Mary University of London

    Google Scholar 

  5. A. Bahraminasab, D. Kenwright, A. Stefanovska, F. Ghasemi, P.V.E. McClintock, IET Syst. Biol. 2, 48 (2008)

    Article  Google Scholar 

  6. N. Schaudinnus, Stochastic modeling of biomolecular systems using the data-driven Langevin equation, Doctoral thesis, Albert-Ludwigs-Universität

    Google Scholar 

  7. F. Nikakhtar, M. Ayromlou, S. Baghram, S. Rahvar, M.R. Rahimi Tabar, R.K. Sheth, Mon. Not. R. Astron. Soc. 478, 5296 (2018)

    Article  ADS  Google Scholar 

  8. https://cran.r-project.org/web/packages/Langevin/index.html

  9. M. Anvari, K. Lehnertz, M.R. Rahimi Tabar, J. Peinke, Sci. Rep. 6, 35435 (2016)

    Article  ADS  Google Scholar 

  10. L.R. Gorjão, J. Heysel, K. Lehnertz, M.R. Rahimi Tabar, arXiv:1907.05371

  11. J. Peinke, M.R. Rahimi Tabar, M. Wächter, Annu. Rev. Condens. Matter Phys. 10 (2019)

    Article  ADS  Google Scholar 

  12. A. Nawroth, J. Peinke, Phys. Lett. A 360, 234 (2006)

    Article  ADS  Google Scholar 

  13. R. Stresing, J. Peinke, New J. Phys. 12, 103046 (2010)

    Article  ADS  Google Scholar 

  14. A. Nawroth, R. Friedrich, J. Peinke, New J. Phys. 12, 083021 (2010)

    Article  ADS  Google Scholar 

  15. A. Hadjihosseini, M. Wächter, N.P. Hoffmann, J. Peinke, New J. Phys. 18, 013017 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. A.H. Shirazi, G.R. Jafari, J. Davoudi, J. Peinke, M.R. Rahimi Tabar, M. Sahimi, J. Stat. Mech. P07046 (2009)

    Google Scholar 

  17. J. Zhang, M. Small, Phys. Rev. Lett. 96, 238701 (2006)

    Article  ADS  Google Scholar 

  18. A. Shreim, P. Grassberger, W. Nadler, B. Samuelsson, J.E.S. Socolar, M. Paczuski, Phys. Rev. Lett. 98, 198701 (2007)

    Article  ADS  Google Scholar 

  19. L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J.C. Nu\(\tilde{n}\)o, Proc. Nat. Acad. Sci. 105, 4972 (2008)

    Google Scholar 

  20. P. Manshour, M.R. Rahimi Tabar, J. Peinke, J. Stat. Mech. 8, P08031 (2015)

    Article  Google Scholar 

  21. R.-Q. Su, W.-X. Wang, X. Wang, Y.-C. Lai, R. Soc. Open Sci. 3, 150577 (2016)

    Google Scholar 

  22. Z. Gao, M. Small, J. Kurths, Europhys. Lett. 116, 50001 (2016)

    Article  ADS  Google Scholar 

  23. M. Jiang, X. Gao, H. An, H. Li, B. Sun, Sci. Rep. 7, 10486 (2017)

    Article  ADS  Google Scholar 

  24. A. Campanharo, M. Sirer, R. Malmgren, F. Ramos, L. Nunes Amaral, PLoS ONE 6, e23378 (2011)

    Article  ADS  Google Scholar 

  25. S. Karimi, A.H. Darooneh, Phys. A 392, 287 (2013)

    Article  Google Scholar 

  26. A.M. Nuñez, L. Lacasa, J.P. Gomez, B. Luque, Visibility algorithms: a short review, in New Frontiers in Graph Theory ed. by Y. Zhang (InTech, Rijeka, Croatia, 2012), pp. 119–152

    Google Scholar 

  27. C. Ma, H.S. Chen, Y.C. Lai, H.F. Zhang, Phys. Rev. E 97, 022301 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Rahimi Tabar .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tabar, M.R.R. (2019). Reconstruction Procedure for Writing Down the Langevin and Jump-Diffusion Dynamics from Empirical Uni- and Bivariate Time Series. In: Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-18472-8_20

Download citation

Publish with us

Policies and ethics