Deformation Theory of Classical Poisson Algebras

  • Maciej Błaszak
Classical physics explains matter and energy on a scale familiar to human experience, including the behavior of astronomical bodies. It remains the key to measurement for much of modern science and technology. However, toward the end of the nineteenth century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. It means for example, that for a proper description of conservative dynamics in micro-scale the classical Hamiltonian mechanics has to be modified (deformed) to a new theory whose predictions are in agrement with experiments in micro-scale of atoms and molecules. Summarizing experimental results from that level we observe that on the microscopic level the classical uncertainty relations (  3.3.15) are violated and have to be modified to a new quantum uncertainty relations


  1. 7.
    Baker, G.: Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space. Phys. Rev. 109, 2198 (1958)MathSciNetCrossRefADSGoogle Scholar
  2. 11.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Quantum mechanics as a deformation of classical mechanics. Lett. Math. Phys. 1, 521 (1975–1977)MathSciNetCrossRefADSGoogle Scholar
  3. 12.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. I. deformations of symplectic structures. Ann. Phys. 111, 61 (1978)MathSciNetCrossRefADSGoogle Scholar
  4. 13.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. II. physical applications. Ann. Phys. 111, 111 (1978)MathSciNetCrossRefADSGoogle Scholar
  5. 19.
    Berezin, F.A.: Quantization. Math. USSR Izv. 8, 1109 (1975)CrossRefGoogle Scholar
  6. 21.
    Berezin, F.A.: Quantization in compex symmetric spaces. Math. USSR Izv. 9, 341 (1975)CrossRefGoogle Scholar
  7. 22.
    Bertelson, M., Cahen, M., Gutt, S.: Equivalence of star products. Class. Quant. Grav. 14, A93 (1997)MathSciNetCrossRefGoogle Scholar
  8. 33.
    Błaszak, M., Domański, Z.: Phase space quantum mechanics. Ann. Phys. 327, 167 (2012)MathSciNetCrossRefADSGoogle Scholar
  9. 35.
    Błaszak, M., Domański, Z.: Canonical transformations in quantum mechanics. Ann. Phys. 331, 70 (2013)MathSciNetCrossRefADSGoogle Scholar
  10. 37.
    Błaszak, M., Domański, Z.: Natural star-products on symplectic manifolds and related quantum mechanical operators. Ann. Phys. 344, 29 (2013)MathSciNetCrossRefADSGoogle Scholar
  11. 53.
    Bordemann, M., Waldmann, S.: Formal GNS construction and states in deformation quantization. Comm. Math. Phys. 195, 549 (1998)MathSciNetCrossRefADSGoogle Scholar
  12. 54.
    Bordemann, M., Neumaier, N., Waldmann, S.: Homogeneous fedosov star products on cotangent bundles I: weyl and standard ordering with differential operator representation. Commun. Math. Phys. 198, 363 (1998)MathSciNetCrossRefADSGoogle Scholar
  13. 57.
    Bordemann, M., Herbig, H., Waldmann, S.: BRST cohomology and phase space reduction in deformation quantization. Comm. Math. Phys. 210, 107 (2001)MathSciNetCrossRefADSGoogle Scholar
  14. 59.
    Bracken, A.J., Watson, P.: The quantum state vector in phase space and Gabor’s windowed Fourier transform. J. Phys. A 43, 395304 (2010)MathSciNetCrossRefGoogle Scholar
  15. 69.
    Cohen, L.: Generalized phase-space distribution functions. J. Math. Phys. 7, 781 (1966)MathSciNetCrossRefADSGoogle Scholar
  16. 74.
    Curtright, T., Zachos, C.: Wigner trajectory characteristics in phase space and field theory. J. Phys. A 32, 771 (1999)MathSciNetCrossRefADSGoogle Scholar
  17. 75.
    Curtright, T., Fairlie, D.B., Zachos, C.: Features of time-independent Wigner functions. Phys. Rev. D 58, 25002 (1998)MathSciNetCrossRefADSGoogle Scholar
  18. 80.
    de Gosson, M.: Symplectically covariant Schrödinger equation in phase space. J. Phys. A 38, 9263 (2005)MathSciNetCrossRefADSGoogle Scholar
  19. 81.
    de Gosson, M.: Symplectic geometry and quantum mechanics. In: Operator Theory: Advances and Applications, vol. 166. Birkhäuser, Basel (2006)Google Scholar
  20. 82.
    de Gosson, M.: Symplectic Methods in Harmonic Analysis and in Mathematical Physics. Birkhäuser, Basel (2011)Google Scholar
  21. 83.
    de Gosson, M., Luef, E: A New Approach to the ⋆ -Genvalue equation. Lett. Math. Phys. 85, 173 (2008)MathSciNetCrossRefADSGoogle Scholar
  22. 84.
    De Wilde, M., Lecomte, P.B.A.: Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7, 487 (1983)MathSciNetCrossRefADSGoogle Scholar
  23. 86.
    Deligne, P.: Déformations de l’algčbre des fonctions d’une variété symplectique: comparaison entre Fedosov et De Wilde, Lecomte. Selecta Math. New Ser. 1, 667 (1995)CrossRefGoogle Scholar
  24. 87.
    Dereli, T., Hakioğlu, T., Teğmen, A.: Quantum canonical transformations in Weyl-Wigner-Groenewold-Moyal formalism. Int. J. Mod. Phys. A 24, 4573 (2009)MathSciNetCrossRefADSGoogle Scholar
  25. 90.
    Dias, N.C., Prata, J.N.: Generalized Weyl–Wigner map and Vey quantum mechanics. J. Math. Phys. 42, 5565 (2001)MathSciNetCrossRefADSGoogle Scholar
  26. 91.
    Dias, N.C., Prata, J.N.: Time dependent transformations in deformation quantization. J. Math. Phys. 45, 887 (2004)MathSciNetCrossRefADSGoogle Scholar
  27. 92.
    Dias, N.C., Prata, J.N.: Formal solution of stargenvalue equations. Ann. Phys. 311, 120 (2004)MathSciNetCrossRefADSGoogle Scholar
  28. 93.
    Dias, N.C., Prata, J.N.: Features of Moyal trajectories. J. Math. Phys. 48, 012109 (2007)MathSciNetCrossRefADSGoogle Scholar
  29. 96.
    Dito, G., Sternheimer, D.: In: Halbout, G. (eds.), Deformation Quantization, vol. 1. Walter de Gruyter, Berlin (2002)Google Scholar
  30. 99.
    Domański, Z., Błaszak, M.: On local equivalence of star-products on Poisson manifolds. ArXiv:1305.4026Google Scholar
  31. 111.
    Fairlie, D.B.: The formulation of quantum mechanics in terms of phase space functions. Math. Proc. Camb. Philos. Soc. 60, 581 (1964)MathSciNetCrossRefADSGoogle Scholar
  32. 118.
    Fedosov, B.V.: A simple geometrical construction of deformation quantization. J. Diff. Geom. 40, 213 (1994)MathSciNetCrossRefGoogle Scholar
  33. 125.
    Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78 (1963)MathSciNetCrossRefGoogle Scholar
  34. 126.
    Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. 79, 59 (1964)MathSciNetCrossRefGoogle Scholar
  35. 129.
    Gerstenhaber, M.: On the deformation of rings and algebras IV. Ann. Math. 99 (1974)MathSciNetCrossRefGoogle Scholar
  36. 130.
    Gerstenhaber, M., Schack, S.D.: Algebraic cohomology and deformation theory. In: Deformation Theory of Algebras and Structures and Applications NATO ASI Series, vol 247 (1988)CrossRefGoogle Scholar
  37. 136.
    Gracia-Bondía, J.M., Várilly, J.C.: Algebras of distributions suitable for phase-space quantum mechanics. J. Math. Phys. 29, 869 (1988)MathSciNetCrossRefADSGoogle Scholar
  38. 140.
    Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12, 405 (1946)MathSciNetCrossRefADSGoogle Scholar
  39. 142.
    Gutt, S.: In: Dito, G., Sternheimer, D. (eds.), Conference Moshé Flato 1999: Quantizations, Deformations and Symmetries. Mathematical Physics Studies, vol 21, p. 2017. Kluwer Academic, Dordrecht, Boston, London (2000)Google Scholar
  40. 143.
    Gutt, S.: Deformation quantization of Poisson manifolds. Geom. Topol. Mon. 17, 171 (2011)zbMATHGoogle Scholar
  41. 147.
    Hietarinta, J.: Quantum canonical transformations as integral transformations. Phys. Rev. D 25, 2103 (1982)MathSciNetCrossRefADSGoogle Scholar
  42. 152.
    Hirshfeld, A.C., Henselder, P.: Deformation quantization in the teaching of quantum mechanics. Am. J. Phys. 70, 537 (2002)MathSciNetCrossRefADSGoogle Scholar
  43. 153.
    Hirshfeld, A.C., Henselder, P.: Star products and perturbative quantum field theory. Ann. Phys. (NY) 302, 59 (2002)Google Scholar
  44. 170.
    Karasev, M.V., Osborn, T.A.: Cotangent bundle quantization: entangling of metric and magnetic field. J. Phys. A 38, 8549 (2005)MathSciNetCrossRefADSGoogle Scholar
  45. 172.
    Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157 (2003). ArXiv:q-alg/9709040v1MathSciNetCrossRefADSGoogle Scholar
  46. 205.
    Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99 (1949)MathSciNetCrossRefADSGoogle Scholar
  47. 207.
    Nasiri, S., Sobouti, Y., Taati, F.: Phase space quantum mechanics-direct. J. math. Phys. 47, 092106 (2006)MathSciNetCrossRefADSGoogle Scholar
  48. 208.
    Natsume, T.: C -algebraic deformation quantization and the index theorem. Math. Phys. Stud. 23, 142 (2001)MathSciNetzbMATHGoogle Scholar
  49. 209.
    Natsume, T., Nest, R., Ingo, P.: Strict quantizations of symplectic manifolds. Lett. Math. Phys. 66,73 (2003)MathSciNetCrossRefADSGoogle Scholar
  50. 210.
    Nest, R., Tsygan, B.: Algebraic index theorem for families. Adv. Math. 113, 151 (1995)MathSciNetCrossRefGoogle Scholar
  51. 213.
    Omori, H., Maeda, Y., Yoshioka, A.: Weyl manifolds and deformation quantization. Adv. Math. 85, 224 (1991)MathSciNetCrossRefGoogle Scholar
  52. 214.
    Omori, H., Maeda, Y., Miyazaki, N., Yoshioka, A.: Deformation quantization of Fréchet-Poisson algebras convergence of the Moyal product. Math. Phys. Stud. 22, 233 (2000)zbMATHGoogle Scholar
  53. 215.
    Omori, H., Maeda, Y., Miyazaki, N., Yoshioka, A.: Orderings and non-formal deformation quantization. Lett. Math. Phys. 82, 153 (2007)MathSciNetCrossRefADSGoogle Scholar
  54. 226.
    Rieffel, M.: Deformation quantization for actions of \(\mathbb {R}^{n}\). Mem of the AMS 506, 93 (1993)Google Scholar
  55. 236.
    Smith, T.B.: Wavefunctions on phase space. J. Phys. A 39, 1469 (2006)MathSciNetCrossRefADSGoogle Scholar
  56. 238.
    Soloviev, M.A.: Algebras with convergent star products and their representations in Hilbert spaces. J. Math. Phys. 54, 073517 (2013)MathSciNetCrossRefADSGoogle Scholar
  57. 256.
    Waldmann, S.: States and representations in deformation quantization. Rev. Math. Phys. 17, 15 (2005)MathSciNetCrossRefGoogle Scholar
  58. 260.
    Weyl, H.: Quantenmechanik und Gruppentheorie. Z. Phys. 46,1 (1927)CrossRefADSGoogle Scholar
  59. 261.
    Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover Publications Inc., New York (1931)zbMATHGoogle Scholar
  60. 263.
    Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)CrossRefADSGoogle Scholar
  61. 269.
    Zachos, C.: Deformation quantization: quantum mechanics lives and works in phase-space. Int. J. Mod. Phys. 17, 297 (2002)MathSciNetCrossRefADSGoogle Scholar
  62. 270.
    Zachos, C., Fairlie, D.B., Curtright, T. (eds.): Quantum Mechanics in a Phase Space: An Overview with Selected Papers. In: World Scientific Series in 20th Century Physics, vol. 34. World Scientific Publishing Co., New Jersey (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maciej Błaszak
    • 1
  1. 1.Division of Mathematical PhysicsFaculty of Physics UAMPoznańPoland

Personalised recommendations