Classical Hamiltonian Mechanics

  • Maciej Błaszak


In this chapter we present the basic facts about the underlying structure of classical Hamiltonian mechanics and in particular statistical Hamiltonian mechanics. The theory is formulated in the frame of Poisson geometry and presymplectic geometry. On the level of statistical Hamiltonian mechanics we introduce the language and notions familiar from the quantum level in order to further unify both theories. In particular we consider such issues as Hamiltonian representation of variational problems of arbitrary order as well as the reduction of Poisson bi-vectors on submanifolds, important for further separability theory.


  1. 24.
    Błaszak, M.: Multi-Hamiltonian theory of dynamical systems. In: Texts and Monographs in Physics. Springer, Berlin (1998)Google Scholar
  2. 38.
    Błaszak, M., Marciniak, K.: Dirac reduction of dual Poisson-presymplectic pairs. J. Phys. A Math. Gen. 37(19), 5173–5187 (2004)MathSciNetCrossRefADSGoogle Scholar
  3. 41.
    Błaszak, M., Rauch-Wojciechowski, S.: Newton representation of nonlinear ordinary differential equations. Physics A 197, 191 (1993)MathSciNetCrossRefADSGoogle Scholar
  4. 85.
    Degiovanni, L., Magnano, G., Tri-Hamiltonian vector fields, spectral curves and separation coordinates. Rev. Math. Phys. 14, 115 (2002)MathSciNetCrossRefGoogle Scholar
  5. 93.
    Dias, N.C., Prata, J.N.: Features of Moyal trajectories. J. Math. Phys. 48, 012109 (2007)MathSciNetCrossRefADSGoogle Scholar
  6. 94.
    Dirac, P.A.M.: Generalized hamiltonian dynamics. Can. J. Math. 2, 129 (1950)MathSciNetCrossRefGoogle Scholar
  7. 101.
    Dubrovin, B.A., Giordano, M., Marmo, G., Simoni, A.: Poisson brackets on presymplectic manifolds. Int. J. Mod. Phys. 8, 3747 (1993)MathSciNetCrossRefADSGoogle Scholar
  8. 112.
    Falqui, G., Pedroni, M.: On a Poisson reduction for Gel’fand-Zakharevich manifolds. Rep. Math. Phys. 50, 395 (2002)MathSciNetCrossRefADSGoogle Scholar
  9. 113.
    Falqui, G., Pedroni, M.: Separation of variables for Bi-Hamiltonian systems. Math. Phys. Anal. Geom. 6, 139 (2003)MathSciNetCrossRefGoogle Scholar
  10. 116.
    Fecko, M.: Differential Geometry and Lie Groups for Physicists. Cambridge University, Cambridge (2006)CrossRefGoogle Scholar
  11. 122.
    Flato, M., Lichnerowicz, A., Sternheimer, D.: Deformations of Poisson brackets, Dirac brackets and applications. J. Math. Phys. 17, 1754–1762 (1976)Google Scholar
  12. 135.
    Grabowski, J., Landi, G., Marmo, G., Vilasi, G.: Generalized reduction procedure: symplectic and Poisson formalism. Fortschr. Phys. 42, 393 (1994)MathSciNetCrossRefGoogle Scholar
  13. 146.
    Henon, M., Heiles, C.: The aplicability of the third integral of motion: some numerical experiments. AStronom. J. 69, 73 (1964)MathSciNetCrossRefADSGoogle Scholar
  14. 178.
    Libermann, P., Marle, C.M.: Symplectic Geometry and Analytical Mechanics. D. Reidel, Dordreht (1987)CrossRefGoogle Scholar
  15. 179.
    Lichnerowicz, A.: Variété symplectique et dynamique associéeàune sous-variété. C.R.Acad.Sci.Paris Ser. A-B 280, A523 (1975)Google Scholar
  16. 180.
    Lichnerowicz, A.: Les variétés de poisson et leurs algèbres de Lie associées. J. Diff. Geom. 12, 253 (1977)CrossRefGoogle Scholar
  17. 190.
    Marciniak, K., Błaszak, M.: Geometric reduction of Hamiltonian systems. Rep. Math. Phys. 55, 325 (2005)MathSciNetCrossRefADSGoogle Scholar
  18. 195.
    Marle, Ch.-M.: Various approaches to conservative and nonconservative nonholonomic systems. Rep. Math. Phys. 42, 211–229 (1998)MathSciNetCrossRefADSGoogle Scholar
  19. 197.
    Marsden, J.E., Ratiu, T.: Reduction of Poisson manifolds. Lett. Math. Phys. 11, 161 (1986)MathSciNetCrossRefADSGoogle Scholar
  20. 198.
    Marsden, J.E., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130 (1974)MathSciNetCrossRefADSGoogle Scholar
  21. 212.
    Olver, P.: Application of Lie Groups to Differential Equations. Springer, Berlin (1993)CrossRefGoogle Scholar
  22. 225.
    Rauch-Wojciechowski, S., Marciniak, K., Lundmark, H.: Quasi-Lagrangian systems of Newton equations. J. Math. Phys. 40, 6366 (1999)MathSciNetCrossRefADSGoogle Scholar
  23. 237.
    Śniatycki, J.: Dirac brackets in geometric dynamics. Ann. Inst. H. Poincaré Sect. A (N.S.) 20, 365–372 (1974)Google Scholar
  24. 252.
    van der Schaft, A.J., Maschke, B.M.: On the Hamiltonian formulation of nonholonomic mechanical systems. Rep.Math.Phys. 34, 225 (1994)MathSciNetCrossRefADSGoogle Scholar
  25. 258.
    Wasserman, R.H.: Tensor and Manifolds with Applications to Physics, 2nd edn. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  26. 262.
    Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Dover, New York (1944)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Maciej Błaszak
    • 1
  1. 1.Division of Mathematical PhysicsFaculty of Physics UAMPoznańPoland

Personalised recommendations