Abstract
Mycobacterium tuberculosis (Mtb) is one of the notorious pathogens which has led to high mortality rates and demonstrated extreme drug resistance (XDR) to most of the conventional drugs and become a potential threat to public health worldwide. Hence, there is high demand and need to screen novel drug targets and alternate lead molecules that can be used as starting point of developing potential therapies against this pathogen. The proposed chapter illustrates the application of computer-aided virtual screening for screening novel and probable drug targets of Mycobacterium tuberculosis and identification of novel lead molecules as therapeutic remedies by computational biology tools and approaches. The chapter initially focuses on the recent perspectives on XDR-Mtb, major metabolic pathways responsible for the pathogenesis, conventional therapies and associated drug resistance and challenges and scope of computational drug screening. This chapter further illustrates potential drug targets, various approaches for the prediction of these targets, molecular modelling works, screening of novel lead molecules by computational virtual screening with ideal drug likeliness and ADMET (absorption, distribution, metabolism, excretion and toxicity) features, application of docking studies and simulation. Thus, the present chapter provides latest developments in molecular medicine and computational drug discovery to combat tuberculosis (TB) and thereby open new paradigm for the development of novel leads against potential drug targets for XDR-Mtb.
Keywords
- Mycobacterium tuberculosis
- Extreme drug resistance
- Novel drug targets
- Computer-aided virtual screening
- Molecular modelling
- Novel natural leads
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. https://doi.org/10.1016/j.softx.2015.06.001
Agyeman AA, Ofori-Asenso R (2016) Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 15(1):41
Alderwick LJ, Seidel M, Sahm H, Besra GS, Eggeling L (2006) Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J Biol Chem 281(23):15653–15661
Almeida-Da-Silva PE, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66(7):1417–1430
Amir A, Rana K, Arya A, Kapoor N, Kumar H, Siddiqui MA (2014) Mycobacterium tuberculosis H37Rv: in silico drug targets identification by metabolic pathways analysis. Int J Evol Biol 2014:284170
Anastasio TJ (2017) Editorial: computational and experimental approaches in multi-target pharmacology. Front Pharmacol 8:443
Averbukh I, Ben-Zvi D, Mishra S, Barkai N (2014) Scaling morphogen gradients during tissue growth by a cell division rule. Development 141(10):2150–2156
Ayaz F, Küçükboyacı N, Demirci B (2017) Chemical composition and antimicrobial activity of the essential oil of Conyza canadensis (L.) cronquist from Turkey. J Essent Oil Res 29(4):336–343
Baek M, Shin WH, Chung HW, Seok C (2017) GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking. J Comput Aided Mol Des 31(7):653–666
Baldi A (2010) Computational approaches for drug design and discovery: an overview. Sys Rev Pharm 1(1):95–105
Bashiri G, Rehan AM, Sreebhavan S, Baker HM, Baker EN, Squire CJ (2016) Elongation of the poly-γ-glutamate tail of F420 requires both domains of the F420:γ-glutamyl ligase (FbiB) of Mycobacterium tuberculosis. J Biol Chem 291(13):6882–6894
Bates PA, Kelley LA, MacCallum RM, Sternberg MJ (2001) Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 5:39–46
Baugh L, Phan I, Begley DW, Clifton MC, Armour B, Dranow DM, Taylor BM, Muruthi MM, Abendroth J, Fairman JW, Fox D 3rd, Dieterich SH, Staker BL, Gardberg AS, Choi R, Hewitt SN, Napuli AJ, Myers J, Barrett LK, Zhang Y, Ferrell M, Mundt E, Thompkins K, Tran N, Lyons-Abbott S, Abramov A, Sekar A, Serbzhinskiy D, Lorimer D, Buchko GW, Stacy R, Stewart LJ, Edwards TE, Van Voorhis WC, Myler PJ (2015) Increasing the structural coverage of tuberculosis drug targets. Tuberculosis (Edinb) 95(2):142–148
Belanger AE, Besra GS, Ford ME, Mikusová K, Belisle JT, Brennan PJ, Inamine JM (1996) The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A 93(21):11919–11924
Bell LCK, Noursadeghi M (2018) Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nat Rev Microbiol 16(2):80–90
Berrada ZL, Lin SY, Rodwell TC, Nguyen D, Schecter GF, Pham L, Janda JM, Elmaraachli W, Catanzaro A, Desmond E (2016) Rifabutin and rifampin resistance levels and associated rpoB mutations in clinical isolates of Mycobacterium tuberculosis complex. Diagn Microbiol Infect Dis 85(2):177–181
Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4(2):90–98
Blaszczyk M, Jamroz M, Kmiecik S, Kolinski A (2013) CABS-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res 41(Web Server issue):W406–W411
Bohm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6(1):61–78
Bradley P, Misura KM, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309(5742):1868–1871
Brooks BR, Brooks CL, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614
Bruning JB, Murillo AC, Chacon O, Barletta RG, Sacchettini JC (2011) Structure of the Mycobacterium tuberculosis D-alanine:D-alanine ligase, a target of the antituberculosis drug D-cycloserine. Antimicrob Agents Chemother 55(1):291–301
Brylinski M, Skolnick J (2008) Q-Dock: low-resolution flexible ligand docking with pocket-specific threading restraints. J Biol Chem 29(10):1574–1588
Burkhard P, Taylor P, Walkinshaw MD (1998) An example of a protein ligand found by database mining: description of the docking method and its verification by a 2.3 A X-ray structure of a thrombinligand complex. J Mol Biol 277(2):449–466
Bushra E, Adem J (2016) Mycobacterial metabolic pathways as drug targets: a review. Int J Microbiol Res 7(3):74–87
Case DA, Cerutti DS, Cheatham TE, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Greene D, Homeyer N, Izadi S, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz KM, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2017) AMBER 2017. University of California, San Francisco
Centers for Disease Control and Prevention (CDC). (2018) https://www.cdc.gov/tb/topic/research/default.htm. Accessed 10 Apr 2018
Chambers HF, Turner J, Schecter GF, Kawamura M, Hopewell PC (2005) Imipenem for treatment of tuberculosis in mice and humans. Antimicrob Agents Chemother 49(7):2816–2821
Chandra N (2011) Computational approaches for drug target identification in pathogenic diseases. Expert Opin Drug Discov 6(10):975–979
Chang DT, Oyang YJ, Lin JH (2005) MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Res 33(Web Server issue):W233–W238
Chaudhary KK, Mishra N (2016) A review on molecular docking: novel tool for drug discovery. JSM Chem 4(3):1029
Chen HM, Liu BF, Huang HL, Hwang SF, Ho SY (2007) SODOCK: swarm optimization for highly flexible protein-ligand docking. J Biol Chem 28(2):612–623
Chen J, Zhang S, Cui P, Shi W, Zhang W, Zhang Y (2017) Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 72(12):3272–3276
Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14(1):133–141
Chinsembu KC (2016) Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. Acta Trop 153:46–56
Choi V (2005) YUCCA: an efficient algorithm for small-molecule docking. Chem Biodivers 2(11):1517–1524
Chung JY, Cho SJ, Hah JM (2011) A python-based docking program utilizing a receptor bound ligand shape: PythDock. Arch Pharm Res 34(9):1451–1458
Clark KP (1995) Flexible ligand docking without parameter adjustment across four ligand-receptor complexes. J Comput Chem 16:1210–1226
Clark DE (2003) In-silico prediction of blood–brain barrier permeation. Drug Discov Today 8(20):927–933
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544
Coll F, Phelan J, Hill-Cawthorne GA, Nair MB, Mallard K, Ali S, Abdallah AM, Alghamdi S, Alsomali M, Ahmed AO, Portelli S, Oppong Y, Alves A, Bessa TB, Campino S, Caws M, Chatterjee A, Crampin AC, Dheda K, Furnham N, Glynn JR, Grandjean L, Minh-Ha D, Hasan R, Hasan Z, Hibberd ML, Joloba M, Jones-López EC, Matsumoto T, Miranda A, Moore DJ, Mocillo N, Panaiotov S, Parkhill J, Penha C, Perdigão J, Portugal I, Rchiad Z, Robledo J, Sheen P, Shesha NT, Sirgel FA, Sola C, Oliveira Sousa E, Streicher EM, Helden PV, Viveiros M, Warren RM, McNerney R, Pain A, Clark TG (2018) Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet 50(2):307–316
D’Ambrosio L, Centis R, Tiberi S, Tadolini M, Dalcolmo M, Rendon A, Esposito S, Migliori GB (2017) Delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis in children: a systematic review. J Thorac Dis 9(7):2093–2101
Dar AM, Mir S (2017) Molecular docking: approaches, types, applications and basic challenges. J Anal Bioanal Tech 8:356
de-Mendonça JD, Ely F, Palma MS, Frazzon J, Basso LA, Santos DS (2007) Functional characterization by genetic complementation of aroB-encoded dehydroquinate synthase from Mycobacterium tuberculosis H37Rv and its heterologous expression and purification. J Bacteriol 189(17):6246–6252
de-Ruyck J, Brysbaert G, Blossey R, Lensink MF (2016) Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem 9:1–11
De-Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59(9):4035–4061
Dheda K, Chang KC, Guglielmetti L, Furin J, Schaaf HS, Chesov D, Esmail A, Lange C (2017) Clinical management of adults and children with multidrug-resistant and extensively drug-resistant tuberculosis. Clin Microbiol Infect 23(3):131–140
Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737
Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K (2018) Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother. https://doi.org/10.1093/jac/dkx506
Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34(Web Server issue):W116–W118
Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71
Engin HB, Gursoy A, Nussinov R, Keskin O (2014) Network-based strategies can help mono- and poly-pharmacology drug discovery: a systems biology view. Curr Pharm Des 20(8):1201–1207
Errey JC, Blanchard JS (2005) Functional characterization of a novel ArgA from Mycobacterium tuberculosis. J Bacteriol 187(9):3039–3044
European Center for Disease Prevention and Control (ECDC). (2018) https://ecdc.europa.eu/en/publications-data/tuberculosis-surveillance-and-monitoring-europe-2018. Accessed 10 Apr 2018
Ewing TJA, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15(5):411–428
Fakhar Z, Naiker S, Alves CN, Govender T, Maguire GE, Lameira J, Lamichhane G, Kruger HG, Honarparvar B (2016) A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis. J Biomol Struct Dyn 34(11):2399–2417
Fan H, Schneidman-Duhovny D, Irwin JJ, Dong G, Shoichet BK, Sali A (2011) Statistical potential for modeling and ranking of protein–ligand interactions. J Chem Inf Model 51(12):3078–3092
Ferraris DM, Spallek R, Oehlmann W, Singh M, Rizzi M (2015) Structures of citrate synthase and malate dehydrogenase of Mycobacterium tuberculosis. Proteins 83(2):389–394
Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20(7):13384–13421
Field SK (2015) Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis 6(4):170–184
Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs WR Jr, Venter JC, Fraser CM (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184(19):5479–5490
Forrellad MA, Klepp LI, Gioffré A, Sabio-y-García J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F (2013) Virulence factors of the Mycobacterium tuberculosis complex. Virulence 4(1):3–66
Gabb HA, Jackson RM, Sternberg MJ (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 272(1):106–120
Gao Z, Li H, Zhang H, Liu X, Kang L, Luo X, Zhu W, Chen K, Wang X, Jiang H (2008) PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics 9:104
Gaudreault F, Najmanovich RJ (2015) FlexAID: revisiting docking on non-native-complex structures. J Chem Inf Model 55(7):1323–1336
Geromichalos GD (2012) Virtual screening strategies and application in drug designing. Drug Des 2:e109
Ghose AK, Herbertz T, Salvino JM, Mallamo JP (2006) Knowledge-based chemoinformatic approaches to drug discovery. Drug Discov Today 11(23–24):1107–1114
Gonzalo X, Drobniewski F (2013) Is there a place for β-lactams in the treatment of multidrug-resistant/extensively drug-resistant tuberculosis? Synergy between meropenem and amoxicillin/clavulanate. J Antimicrob Chemother 68(2):366–369
Graham DE, Xu H, White RH (2002) Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes. J Biol Chem 277(16):13421–13429
Grochowski LL, Xu H, White RH (2008) Identification and characterization of the 2-phospho-L-lactate guanylyltransferase involved in coenzyme F420 biosynthesis. Biochemistry 47(9):3033–3037
Grosdidier A, Zoete V, Michielin O (2007) EADock: docking of small molecules into protein active sites with a multi objective evolutionary optimization. Proteins 67(4):1010–1025
Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39.(Web Server issue:W270–W277
Gupta A, Gandhimathi A, Sharma P, Jayaram B (2007) ParDOCK: an all atom energy based Monte Carlo docking protocol for protein-ligand complexes. Protein Pept Lett 14(7):632–646
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759
Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305(5689):1457–1462
Hart TN, Read RJ (1992) A multiple-start Monte Carlo docking method. Proteins 13(3):206–222
Hazai E, Kovács S, Demkó L, Bikádi Z (2009) DockingServer: molecular docking calculations online. Acta Pharm Hung 79(1):17–21
Huang B (2009) MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS 13(4):325–330
Huang SY, Li M, Wang J, Pan Y (2016) HybridDock: A hybrid protein-ligand docking protocol integrating protein- and ligand-based approaches. J Chem Inf Model 56(6):1078–1087
Hung CL, Chen CC (2014) Computational approaches for drug discovery. Drug Dev Res 75(6):412–418
Irwin JJ, Shoichet BK, Mysinger MM, Huang N, Colizzi F, Wassam P, Cao Y (2009) Automated docking screens: a feasibility study. J Med Chem 52(18):5712–5720
Jabeen K, Shakoor S, Hasan R (2015) Fluoroquinolone-resistant tuberculosis: implications in settings with weak healthcare systems. Int J Infect Dis 32:118–123
Janardhan S, John L, Prasanthi M, Poroikov V, Narahari-Sastry G (2017) A QSAR and molecular modelling study towards new lead finding: polypharmacological approach to Mycobacterium tuberculosis. SAR QSAR Environ Res 28(10):815–832
Jiang F, Kim SH (1991) “Soft docking”: matching of molecular surface cubes. J Mol Biol 219(1):79–102
Jones DT (1999) GenTHREADER: an efficient and reliable protein folds recognition method for genomic sequences. J Mol Biol 287(4):797–815
Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462
Kar S, Roy K (2013) How far can virtual screening take us in drug discovery? Expert Opin Drug Discov 8(3):245–261
Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14:177–184
Kaur G, Pandey B, Grover A, Garewal N, Grover A, Kaur J (2018) Drug targeted virtual screening and molecular dynamics of LipU protein of Mycobacterium tuberculosis and Mycobacterium leprae. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2018.1454852
Kelley BP, Brown SP, Warren GL, Muchmore SW (2015a) POSIT: flexible shape-guided docking for pose prediction. J Chem Inf Model 55(8):1771–1780
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015b) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858
Kim DS, Kim CM, Won CI, Kim JK, Ryu J, Cho Y, Bhak J (2011) BetaDock: shape-priority docking method based on beta-complex. J Biomol Struct Dyn 29(1):219–242
Kneidinger B, Marolda C, Graninger M, Zamyatina A, McArthur F, Kosma P, Valvano MA, Messner P (2002) Biosynthesis pathway of ADP-L-glycero-beta-D-manno-heptose in Escherichia coli. J Bacteriol 184(2):363–369
Ko Y, Choi I (2016) Putative 3D structure of QcrB from Mycobacterium tuberculosis cytochrome bc1 complex, a novel drug-target for new series of antituberculosis agent Q203. Bull Kor Chem Soc 37:725–731
Korb O, Stützle T, Exner TE (2006) PLANTS: application of ant colony optimization to structure-based drug design. In: Dorigo M, Gambardella LM, Birattari M, Martinoli A, Poli R, Stützle T (eds) Ant colony optimization and swarm intelligence, vol 4150. Springer, Berlin, Heidelberg, pp 247–258
Krüüner A, Jureen P, Levina K, Ghebremichael S, Hoffner S (2003) Discordant resistance to kanamycin and amikacin in drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 47(9):2971–2973
Kumar P, Arora K, Lloyd JR, Lee IY, Nair V, Fischer E, Boshoff HI, Barry CE 3rd (2012) Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Mol Microbiol 86(2):367–381
Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 13(5):323–330, 307–308
Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21(9):1908–1916
Lee GR, Seok C (2016) Galaxy7TM: flexible GPCR-ligand docking by structure refinement. Nucleic Acids Res 44(W1):W502–W506
Lee HS, Zhang Y (2012) BSP-SLIM: a blind low-resolution ligand-protein docking approach using predicted protein structures. Proteins 80(1):93–110
Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Org Chem 12:2694–2718
Leeson PD, Davis AM, Steele J (2004) Drug-like properties: guiding principles for design–or chemical prejudice? Drug Discov Today Technol 1(3):189–195
LeMagueres P, Im H, Ebalunode J, Strych U, Benedik MJ, Briggs JM, Kohn H, Krause KL (2005) The 1.9 A crystal structure of alanine racemase from Mycobacterium tuberculosis contains a conserved entryway into the active site. Biochemistry 44(5):1471–1481
Li YH, Yu CY, Li XX, Zhang P, Tang J, Yang Q, Fu T, Zhang X, Cui X, Tu G, Zhang Y, Li S, Yang F, Sun Q, Qin C, Zeng X, Chen Z, Chen YZ, Zhu F (2018) Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res 46(D1):D1121–D1127
Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins 78(8):1950–1958
Lionta E, Spyrou G, Vassilatis DK, Cournia Z (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14(16):1923–1938
Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341
Liu M, Wang S (1999) MCDOCK: a Monte Carlo simulation approach to the molecular docking problem. J Comput Aided Mol Des 13(5):435–451
Liu T, Tang GW, Capriotti E (2011) Comparative modeling: the state of the art and protein drug target structure prediction. Comb Chem High Throughput Screen 14(6):532–547
Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X (2018) Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov 13(1):23–37
London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions. Nucleic Acids Res 39(Web Server issue):W249–W253
Lone MY, Athar M, Gupta VK, Jha PC (2017a) Identification of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors: a combined in-silico and in-vitro analysis. J Mol Graph Model 76:172–180
Lone MY, Athar M, Gupta VK, Jha PC (2017b) Prioritization of natural compounds against Mycobacterium tuberculosis 3-dehydroquinate dehydratase: A combined in-silico and in-vitro study. Biochem Biophys Res Commun 491(4):1105–1111
Lone MY, Manhas A, Athar M, Jha PC (2017c) Identification of InhA inhibitors: a combination of virtual screening, molecular dynamics simulations and quantum chemical studies. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2017.1372313
Maganti L, OSDD Consortium, Ghoshal N (2015) 3D-QSAR studies and shape based virtual screening for identification of novel hits to inhibit MbtA in Mycobacterium tuberculosis. J Biomol Struct Dyn 33(2):344–364
Maitre T, Aubry A, Jarlier V, Robert J, Veziris N, CNR-MyRMA (2017) Multidrug and extensively drug-resistant tuberculosis. Med Mal Infect 47(1):3–10
Manikandan K, Geerlof A, Zozulya AV, Svergun DI, Weiss MS (2011) Structural studies on the enzyme complex isopropylmalate isomerase (LeuCD) from Mycobacterium tuberculosis. Proteins 79(1):35–49
Mansuri R, Ansari MY, Singh J, Rana S, Sinha S, Sahoo GC, Dikhit MR, Das P (2016) Computational elucidation of structural basis for ligand binding with Mycobacterium tuberculosis glucose-1-phosphate thymidylyltransferase (RmlA). Curr Pharm Biotechnol 17(12):1089–1099
Mao C, Shukla M, Larrouy-Maumus G, Dix FL, Kelley LA, Sternberg MJ, Sobral BW, de-Carvalho LP (2013) Functional assignment of Mycobacterium tuberculosis proteome revealed by genome-scale fold-recognition. Tuberculosis (Edinb) 93(1):40–46
Marialke J, Tietze S, Apostolakis J (2008) Similarity based docking. J Chem Inf Model 48(1):186–196
Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS One 6(12):e28766
Matteelli A, Roggi A, Carvalho AC (2014) Extensively drug-resistant tuberculosis: epidemiology and management. Clin Epidemiol 6:111–118
Maus CE, Plikaytis BB, Shinnick TM (2005a) Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49(2):571–577
Maus CE, Plikaytis BB, Shinnick TM (2005b) Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49(8):3192–3197
McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK (2003) Gaussian docking functions. Biopolymers 68(1):76–90
McMartin C, Bohacek RS (1997) QXP: powerful, rapid computer algorithms for structure-based drug design. J Comput Aided Mol Des 11(4):333–344
Mehra R, Rani C, Mahajan P, Vishwakarma RA, Khan IA, Nargotra A (2016) Computationally guided identification of novel Mycobacterium tuberculosis GlmU lnhibitory leads, their optimization, and in vitro validation. ACS Comb Sci 18(2):100–116
Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157
Miller MD, Kearsley SK, Underwood DJ, Sheridan RP (1994) FLOG: a system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure. J Comput Aided Mol Des 8(2):153–174
Mizutani MY, Tomioka N, Itai A (1994) Rational automatic search method for stable docking models of protein and ligand. J Mol Biol 243(2):310–326
Mohamad S, Ismail NN, Parumasivam T, Ibrahim P, Osman H, A Wahab H (2018) Antituberculosis activity, phytochemical identification of Costus speciosus (J. Koenig) Sm., Cymbopogon citratus (DC. Ex Nees) Stapf., and Tabernaemontana coronaria (L.) Willd. and their effects on the growth kinetics and cellular integrity of Mycobacterium tuberculosis H37Rv. BMC Complement Altern Med 18(1):5
Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662
Mukhopadhyay S, Nair S, Ghosh S (2012) Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol Rev 36(2):463–485
Namasivayam V, Gunther R (2007) PSO@AUTODOCK: a fast flexible molecular docking program based on swarm intelligence. Chem Biol Drug Des 70(6):475–484
Naz S, Farooq U, Ali S, Sarwar R, Khan S, Abagyan R (2018) Identification of new benzamide inhibitor against α-subunit of tryptophan synthase from Mycobacterium tuberculosis through structure-based virtual screening, anti-tuberculosis activity and molecular dynamics simulations. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2018.1448303
Nazzaro F, Fratianni F, De Martino L, Coppola R, De-Feo V (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 6(12):1451–1474
Njire M, Tan Y, Mugweru J, Wang C, Guo J, Yew W, Tan S, Zhang T (2016) Pyrazinamide resistance in Mycobacterium tuberculosis: review and update. Adv Med Sci 61(1):63–71
Oprea TI (2000) Property distribution of drug-related chemical databases. J Comput Aided Mol Des 14(3):251–264
Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9(2):91–102
Pandey B, Grover S, Tyagi C, Goyal S, Jamal S, Singh A, Kaur J, Grover A (2018) Dynamics of fluoroquinolones induced resistance in DNA gyrase of Mycobacterium tuberculosis. J Biomol Struct Dyn 36(2):362–375
Pang YP, Perola E, Xu K, Prendergast FG (2001) EUDOC: a computer program for identification of drug interaction sites in macromolecules and drug leads from chemical databases. J Comput Chem 22(15):1750–1771
Paul DS, Gautham N (2016) MOLS 2.0: software package for peptide modeling and protein-ligand docking. J Mol Model 22(10):239
Pei JF, Wang Q, Liu ZM, Li QL, Yang K, Lai LH (2006) PSIDOCK: towards highly efficient and accurate flexible ligand docking. Proteins 62(4):934–946
Peng J, Xu J (2011) RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins 10:161–171
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802
Pippel M, Scharfe M, Meier R, Sippl W (2012) ParaDockS – an open source framework for molecular docking. J Cheminform. https://doi.org/10.1186/1758-2946-4-S1-F3
Plewczynski D, Łaźniewski M, von Grotthuss M, Rychlewski L, Ginalski K (2011) VoteDock: consensus docking method for prediction of protein-ligand interactions. J Comput Chem 32(4):568–581
Putri DU, Rintiswati N, Soesatyo MH, Haryana SM (2018) Immune modulation properties of herbal plant leaves: Phyllanthus niruri aqueous extract on immune cells of tuberculosis patient – in vitro study. Nat Prod Res 32(4):463–467
Pyrkov TV, Chugunov AO, Krylov NA, Nolde DE, Efremov RG (2009) PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes. Bioinformatics 25(9):1201–1202
Qiu J, Zang S, Ma Y, Owusu L, Zhou L, Jiang T, Xin Y (2017) Homology modeling and identification of amino acids involved in the catalytic process of Mycobacterium tuberculosis serine acetyltransferase. Mol Med Rep 15(3):1343–1347
Quan D, Nagalingam G, Payne R, Triccas JA (2017) New tuberculosis drug leads from naturally occurring compounds. Int J Infect Dis 56:212–220
Rajendran V, Sethumadhavan R (2014) Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J Biomol Struct Dyn 32(2):209–221
Raman K, Chandra N (2008) Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol 8:234
Raman K, Yeturu K, Chandra N (2008) targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2:109
Ramesh KV, Purohit M, Mekhala K, Krishnan M, Wagle K, Deshmukh S (2008) Modeling the interactions of herbal drugs to β-ketoacyl ACP synthase of Mycobacterium tuberculosis H37Rv. J Biomol Struct Dyn 25(5):481–493
Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN (2007) Virtual screening in drug discovery -- a computational perspective. Curr Protein Pept Sci 8(4):329–351
Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval AB, Juhos S, Schmidtke P et al (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 2014(10):e1003571
Saini DK, Tyagi JS (2005) High-throughput microplate phosphorylation assays based on DevR-DevS/Rv2027c 2-component signal transduction pathway to screen for novel antitubercular compounds. J Biomol Screen 10(3):215–224
Sambandamurthy VK, Wang X, Chen B, Russell RG, Derrick S, Collins FM, Morris SL, Jacobs WR Jr (2002) A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 8(10):1171–1174
Sanusi SB, Abu-Bakar MF, Mohamed M, Sabran SF, Mainasara MM (2017) Southeast Asian medicinal plants as a potential source of antituberculosis agent. Evid Based Complement Alternat Med 2017:7185649
Sauton N, Lagorce D, Villoutreix BO, Miteva MA (2008) MSDOCK: accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening. BMC Bioinformatics 2008:9
Schmidtke P, Bidon-Chanal A, Luque FJ, Barril X (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 27(23):3276–3285
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server issue):W363–W367
Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385
Seidel M, Alderwick LJ, Birch HL, Sahm H, Eggeling L, Besra GS (2007) Identification of a novel arabinofuranosyltransferase AftB involved in a terminal step of cell wall arabinan biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 282(20):14729–14740
Seifert M, Catanzaro D, Catanzaro A, Rodwell TC (2015) Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One 10(3):e0119628
Sengupta S, Roy D, Bandyopadhyay S (2015) Structural insight into Mycobacterium tuberculosis maltosyl transferase inhibitors: pharmacophore-based virtual screening, docking, and molecular dynamics simulations. J Biomol Struct Dyn 33(12):2655–2666
Shin WH, Heo L, Lee J, Ko J, Seok C, Lee J (2011) LigDock-CSA: protein-ligand docking using conformational space annealing. J Comput Chem 32(15):3226–3232
Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432(7019):862–865
Shukla R, Shukla H, Sonkar A, Pandey T, Tripathi T (2017) Structure-based screening and molecular dynamics simulations offer novel natural compounds as potential inhibitors of Mycobacterium tuberculosis isocitrate lyase. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2017.1341337
Silva JRA, Bishai WR, Govender T, Lamichhane G, Maguire GEM, Kruger HG, Lameira J, Alves CN (2016) Targeting the cell wall of Mycobacterium tuberculosis: a molecular modeling investigation of the interaction of imipenem and meropenem with L,D-transpeptidase 2. J Biomol Struct Dyn 34(2):304–317
Singh RK, Kefala G, Janowski R, Mueller-Dieckmann C, von Kries JP, Weiss MS (2005) The high-resolution structure of LeuB (Rv2995c) from Mycobacterium tuberculosis. J Mol Biol 346(1):1–11
Singh T, Biswas D, Jayaram B (2011) AADS – an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J Chem Inf Model 51(10):2515–2527
Skariyachan S, Manjunath M, Bachappanavar N (2018) Screening of potential lead molecules against prioritised targets of multi-drug-resistant-Acinetobacter baumannii – insights from molecular docking, molecular dynamic simulations and in vitro assays. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2018.1451387
Sneader W (1990) Chronology of drug introductions. Comp Med Chem 1:7–80
Sobolev V, Wade RC, Vriend G, Edelman M (1996) Molecular docking using surface complementarity. Proteins 25(1):120–129
Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server issue):W244–W248
Sopitthummakhun K, Thongpanchang C, Vilaivan T, Yuthavong Y, Chaiyen P, Leartsakulpanich U (2012) Plasmodium serine hydroxymethyltransferase as a potential anti-malarial target: inhibition studies using improved methods for enzyme production and assay. Malar J 11:194
Spitzer R, Jain AN (2012) Surflex-Dock: docking benchmarks and real-world application. J Comput Aided Mol Des 26(6):687–699
Stroganov OV, Novikov FN, Stroylov VS, Kulkov V, Chilov GG (2008) Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. J Chem Inf Model 48(12):2371–2385
Sun H, Zhang C, Xiang L, Pi R, Guo Z, Zheng C, Li S, Zhao Y, Tang K, Luo M, Rastogi N, Li Y, Sun Q (2016) Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB. Tuberculosis (Edinb) 96:102–106
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von-Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368
Tan KP, Nguyen TB, Patel S, Varadarajan R, Madhusudhan MS (2013) Depth: a web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins. Nucleic Acids Res 41(Web Server issue):W314–W321
Tan Y, Su B, Zheng H, Song Y, Wang Y, Pang Y (2017) Molecular characterization of prothionamide-resistant Mycobacterium tuberculosis isolates in southern China. Front Microbiol 8:2358
Taylor JS, Burnett RM (2000) DARWIN: a program for docking flexible molecules. Proteins 41(2):173–191
Taylor RD, Jewsbury PJ, Essex JW (2003) FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function. J Comput Chem 24(13):1637–1656
Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49(11):3315–3321
Totrov M, Abagyan R (1997) Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins 1:215–220
Trosset JY, Scheraga HA (1999) Prodock: software package for protein modeling and docking. J Comput Chem 20(4):412–427
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461
Tsai TY, Chang KW, Chen CY (2011) iScreen: world’s first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. J Comput Aided Mol Des 25(6):525–531
Usha T, Shanmugarajan D, Goyal AK, Kumar CS, Middha SK (2017) Recent updates on computer-aided drug discovery: time for a paradigm shift. Curr Top Med Chem 17(30):3296–3307
Valvano MA, Messner P, Kosma P (2002) Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology 148(Pt 7):1979–1989
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623
Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape directed rapid docking of ligands to protein active-sites. J Mol Graph Model 21(4):289–307
Vidyaraj CK, Chitra A, Smita S, Muthuraj M, Govindarajan S, Usharani B, Anbazhagi S (2017) Prevalence of rifampicin-resistant Mycobacterium tuberculosis among human-immunodeficiency-virus-seropositive patients and their treatment outcomes. J Epidemiol Glob Health 7(4):289–294
Vilar S, Cozza G, Moro S (2008) Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 8(18):1555–1572
Vilchèze C, Jacobs WR Jr (2014) Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol Spectr 2(4):MGM2-0014-2013
Vyas V, Jain A, Jain A, Gupta A (2008) Virtual screening: a fast tool for drug design. Sci Pharm 76(3):333–360
Vyas VK, Ukawala RD, Ghate M, Chintha C (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74(1):1–17
Wagener M, Jd V, Nabuurs SB (2012) Flexible protein-ligand docking using the Fleksy protocol. J Comput Chem 33(12):1215–1217
Wang JC, Chu PY, Chen CM, Lin JH (2012) idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res 40(Web Server issue):W393–W399
Webb B, Sali A (2017) Protein structure modeling with MODELLER. Methods Mol Biol 1654:39–54
Welch W, Ruppert J, Jain AN (1996) Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol 3(6):449–462
Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel) 2(3):251–286
World Health Organization (WHO). (2018) http://www.who.int/tb/en/. Accessed 10 Apr 2018
Wu S, Zhang Y (2008) MUSTER: improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72(2):547–556
Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80(7):1715–1735
Yan RX, Si JN, Wang C, Zhang Z (2009) DescFold: a web server for protein fold recognition. BMC Bioinformatics 10:416
Yang JM, Chen CC (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins 55(2):288–304
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8
Zhao Y, Sanner MF (2007) FLIPDock: docking flexible ligands into flexible receptors. Proteins 68(3):726–737
Zhao LL, Sun Q, Liu HC, Wu XC, Xiao TY, Zhao XQ, Li GL, Jiang Y, Zeng CY, Wan KL (2015) Analysis of embCAB mutations associated with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis isolates from China. Antimicrob Agents Chemother 59(4):2045–2050
Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, Jang J, Nam J, Dick T, Walker JR, Pethe K, Camacho LR (2013) Para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem 288(32):23447–23456
Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP (2007) eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graph Model 26(1):198–212
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bachappanavar, N., Skariyachan, S. (2019). Combinatorial Designing of Novel Lead Molecules Towards the Putative Drug Targets of Extreme Drug-Resistant Mycobacterium tuberculosis: A Future Insight for Molecular Medicine. In: Shaik, N., Hakeem, K., Banaganapalli, B., Elango, R. (eds) Essentials of Bioinformatics, Volume II. Springer, Cham. https://doi.org/10.1007/978-3-030-18375-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-18375-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-18374-5
Online ISBN: 978-3-030-18375-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)