Advertisement

Fungi in Snow and Glacial Ice of Antarctica

  • Graciéle Cunha Alves de Menezes
  • Bárbara Alves Porto
  • Jefferson Cardia Simões
  • Carlos Augusto Rosa
  • Luiz Henrique Rosa
Chapter

Abstract

Antarctica has the largest share of the planet’s ice volume. Almost the entire Antarctic continent is permanently covered in snow and ice. In ice ecosystems, the formation of ice, available liquid water and temperature considerably influence the microbial diversity and the type of microorganisms, including different species of fungi, capable of surviving and/or evolving under the extreme conditions of the cryosphere. Fungi inhabiting these ecosystems are called psychrophilic or psychrotolerant fungi, adapted to survive in the cold conditions. They possess a high genetic and physiological plasticity that makes them valuable targets for taxonomic and evolutionary studies in extreme conditions, besides performing important ecological functions in the biogeochemical cycles of these ecosystems. Within the fungal community inhabiting the snow and ice of Antarctica, some species exhibit growth and metabolic activity at low temperatures and have been investigated as a source of antifreeze substances. Although snow and ice are considered ultra-oligotrophic substrates, they have been shown to be interesting habitats for fungi, and several sampling techniques have been used to isolate and identify these microorganisms. However, studies on the diversity of fungal communities in Antarctic snow and ice are scarce, and few taxa have been identified. This chapter deals with the current scenario of diversity studies on fungi in the snow and ice of Antarctica and reviews their features, functions and biotechnological applications.

Keywords

Antarctica Cryosphere Extremophiles Fungi 

References

  1. Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley, New York, pp 265–295Google Scholar
  2. Abyzov SS, Mitskevich IN, Poglazova MN, Barkov NI, Lipenkov VY, Bobin NE, Koudryashov BB, Pashkevich VM (1998) Long-term conservation of viable microorganisms in the ice sheet of Central Antarctica. In: Richard BH (ed) Instruments, methods, and missions for astrobiology international society for optics and photonics, San Diego, pp 75–85Google Scholar
  3. Abyzov SS, Hoover RB, Imura S, Mitskevich IN, Naganuma T, Poglazova MN, Ivanov MV (2004) Use of different methods for discovery of ice-entrapped microorganisms in ancient layers of the Antarctic glacier. Adv Space Res 33:1222–1230CrossRefGoogle Scholar
  4. Amann RI, Ludwig W, Schleifer KH, Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedPubMedCentralGoogle Scholar
  5. Amato P, Doyle S, Christner BC (2009) Macromolecular synthesis by yeasts under frozen conditions. Environ Microbiol 11:589–596CrossRefGoogle Scholar
  6. Anesio AM, Laybourn-Parry J (2012) Glaciers and ice sheets as a biome. Trends Ecol Evol 27:219–225CrossRefGoogle Scholar
  7. Antony R, Sanyal A, Kapse N, Dhakephalkar PK, Thamban M, Nair S (2016) Microbial communities associated with Antarctic snow pack and their biogeochemical implications. Microbiol Res 192:192–202CrossRefGoogle Scholar
  8. Bagshaw EA, Tranter M, Fountain AG, Welch K, Basagic HJ, Lyons WB (2013) Do cryoconite holes have the potential to be significant sources of C, N, and P to downstream depauperate ecosystems of Taylor Valley, Antarctica? Arct Antarct Alp Res 45:440–454CrossRefGoogle Scholar
  9. Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226CrossRefGoogle Scholar
  10. Castiella MC (2014) Caracterización dinámica del glaciar Hurd combinando observaciones de campo y simulaciones numéricas. Dissertation, Polytechnic University of MadridGoogle Scholar
  11. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261CrossRefGoogle Scholar
  12. Comiso JC, Kwok R, Martin S, Gordon AL (2011) Variability and trends in sea ice extent and ice production in the Ross Sea. J Geophys Res Oceans 116(C4):C04021CrossRefGoogle Scholar
  13. Convey P, Bindschadler R, Di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski PA, Summerhayes CP, Turner J, Acce Consortium (2009) Antarctic climate change and the environment. Antarct Sci 21:541–563Google Scholar
  14. Cowan DA, Tow LA (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690CrossRefGoogle Scholar
  15. Cowan DA, Ramond JB, Makhalanyane TP, De Maayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102CrossRefGoogle Scholar
  16. D’Elia T, Veerapaneni R, Rogers SO (2008) Isolation of microbes from Lake Vostok accretion ice. Appl Environ Microbiol 74:4962–4965CrossRefGoogle Scholar
  17. D’Elia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763CrossRefGoogle Scholar
  18. De Menezes GC, Godinho VM, Porto BA, Gonçalves VN, Rosa LH (2017) Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles 21:259–269CrossRefGoogle Scholar
  19. Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30:322–328CrossRefGoogle Scholar
  20. Eicken H (2003) From the microscopic, to the macroscopic, to the regional scale: growth, microstructure and properties of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice-an introduction to its physics, chemistry, biology and geology, vol 25. Blackwell, Oxford, pp 22–81Google Scholar
  21. Elster J, Delmas RJ, Petit JR, Reháková K (2007) Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes). Biogeosci Discuss 4:1779–1813CrossRefGoogle Scholar
  22. Escobar-Zepeda A, Vera-Ponce de León A, Sanchez-Flores A (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348CrossRefGoogle Scholar
  23. Ewart KV, Lin Q, Hew CL (1999) Structure, function and evolution of antifreeze proteins. Cell Mol Life Sci 55:271–283CrossRefGoogle Scholar
  24. Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841CrossRefGoogle Scholar
  25. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200CrossRefGoogle Scholar
  26. Fountain AG, Nylen TH, MacCLUNE KL, Dana GL (2006) Glacier mass balances (1993–2001), Taylor Valley, McMurdo Dry Valleys, Antarctica. J Glaciol 52:451–462CrossRefGoogle Scholar
  27. Gilbert JA, Hill PJ, Dodd CE, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180CrossRefGoogle Scholar
  28. Goodison BE, Brown RD, Crane RG, Alley R, Bales R, Barber D, Barry R, Bentley C, Carrol T, Cline D, Duguay CR, Flato GM, Hall DK, Harrington R, Kargel J, Kieffer H, Munro S, Parkinson C, Raup B, Rothrock A, Sharp M (1999) Cryospheric systems. In: King M D (ed) NASA EOS Science Plan: The State of Science in the EOS Program pp 261–307Google Scholar
  29. Grzesiak J, Zdanowski MK, Górniak D, Świątecki A, Aleksandrzak-Piekarczyk T, Szatraj K, Sasin-Kurowska J, Nieckarz M (2015) Microbial community changes along the Ecology Glacier ablation zone (King George Island, Antarctica). Polar Biol 38:2069–2083CrossRefGoogle Scholar
  30. Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chemis Earth Parts A/B/C 28:1273–1278CrossRefGoogle Scholar
  31. Hassett BT, Gradinger R (2016) Chytrids dominate arctic marine fungal communities. Environ Microbiol 18:2001–2009CrossRefGoogle Scholar
  32. Hodson A, Anesio AM, Ng F, Watson R, Quirk J, Irvine-Fynn T, Dye A, Clark C, McCloy P, Kohler J, Sattler B (2007) A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J Geophys Res Biogeosci 112(G4):G04S36CrossRefGoogle Scholar
  33. Hodson A, Anesio AM,Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial Ecosystems. Ecol Monogr 78:41–67CrossRefGoogle Scholar
  34. Jacobs PH, Taylor HC, Shafer JC (1964) Studies of fungi at Amundsen-Scott IGY South Pole Base. Arch Dermatol 89:117–123CrossRefGoogle Scholar
  35. Knowlton C, Veerapaneni R, D’Elia RSO (2013) Microbial analyses of ancient ice core sections from Greenland and Antarctica. Biology 2:206–232CrossRefGoogle Scholar
  36. Legendre L, Ackley SF, Dieckmann GS, Gulliksen B, Horner R, Hoshiai T, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. Polar Biol 12:429–444Google Scholar
  37. Ma L, Catranis CM, Starmer WT, Rogers SO (1999) Revival and characterization of fungi from ancient polar ice. Mycologist 13:70–73CrossRefGoogle Scholar
  38. Ma LJ, Rogers SO, Catranis CM, Starmer WT (2000) Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 1:286–295CrossRefGoogle Scholar
  39. Maccario L, Sanguino L, Vogel TM, Larose C (2015) Snow and ice ecosystems: not so extreme. Res Microbiol 166:782–795CrossRefGoogle Scholar
  40. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361CrossRefGoogle Scholar
  41. Miteva V (2008) Bacteria in snow and glacier ice. In: Margesin R (ed) Psychrophiles: from biodiversity to biotechnology, 2nd edn. Springer, Berlin, pp 31–50CrossRefGoogle Scholar
  42. Miteva V, Teacher C, Sowers T, Brenchley J (2009) Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ Microbiol 11:640–656CrossRefGoogle Scholar
  43. Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Microbiol 7:605–619CrossRefGoogle Scholar
  44. Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157CrossRefGoogle Scholar
  45. Poindexter JS (2009) Low-Nutrient Environments. In: Schaechter M (ed) Encyclopedia of Microbiology, 3rd Elsevier, San Diego, pp 240–257CrossRefGoogle Scholar
  46. Polezhaeva TV, Zaitseva ОО, Khudyakov АN, Laptev DS, Golovchenko VV, Gordiyenko ЕА, Kuleshova LG (2014) Use of pectic polysaccharides for cryopreservation of biological objects. Arch Biol Sci 66:1025–1033CrossRefGoogle Scholar
  47. Powell MJ, Letcher PM, Chambers JG, Roychoudhury S. (2015) A new genus and family for the misclassified chytrid, Rhizophlyctis harderi. Mycologia 107:419-431CrossRefGoogle Scholar
  48. Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci 97:1247–12451CrossRefGoogle Scholar
  49. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353CrossRefGoogle Scholar
  50. Robinson DH, Kolber Z, Sullivan CW (1997) Photophysiology and photoacclimation in surface sea ice algae from McMurdo Sound, Antarctica. Mar Ecol Prog Ser 147:243–256CrossRefGoogle Scholar
  51. Rogers SO, Theraisnathan V, Ma LJ, Zhao Y, Zhang G, Shin SG, Castello JD, Starmer WT (2004) Comparisons of protocols for decontamination of environmental ice samples for biological and molecular examinations. Appl Environ Microbiol 70:2540–2544CrossRefGoogle Scholar
  52. Sanyal A, Antony R, Samui G, Thamban M (2018) Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiol Res 208:32–42CrossRefGoogle Scholar
  53. Shtarkman YM, Koçer ZA, Edgar R, Veerapaneni RS, D’Elia T, Morris PF, Rogers SO (2013) Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya. PLoS One 8:e67221CrossRefGoogle Scholar
  54. Singh SM, Singh PN, Singh SK, Sharma PK (2014) Pigment, fatty acid and extracellular enzyme analysis of a fungal strain Thelebolus microsporus from Larsemann Hills, Antarctica. Pol Polar Rec 50:31–36CrossRefGoogle Scholar
  55. Telling J, Anesio AM, Tranter M, Irvine-Fynn T, Hodson A, Butler C, Wadham J (2011) Nitrogen fixation on Arctic glaciers, Svalbard. J Geophys Res Biogeosci 116(G3):1–8Google Scholar
  56. Thomas-Hall S, Watson K (2002) Cryptococcus nyarrowii sp. nov., a basidiomycetous yeast from Antarctica. Int J Syst Evol Microbiol 52:1033–1038PubMedGoogle Scholar
  57. Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59CrossRefGoogle Scholar
  58. Tibbett M, Sanders FE, Cairney JW (1998) The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol Res 102(2):129–135CrossRefGoogle Scholar
  59. Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83CrossRefGoogle Scholar
  60. Vaughan DG, Comiso JC, Allison CJ, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E (2013) Observations: cryosphere. Clim Chang 2103:317–382Google Scholar
  61. Wadhams P, Comiso JC (1992) The ice thickness distribution inferred using remote sensing techniques. In: Carsey FD (ed), Geophysical Monograph Book Series, American Geophysical Union, Washington DC, pp 375-383Google Scholar
  62. Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 1:222–229CrossRefGoogle Scholar
  63. Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19:141–147CrossRefGoogle Scholar
  64. Xiao N, Inaba S, Tojo M, Degawa Y, Fujiu S, Kudoh S, Hoshino T (2010a) Antifreeze activities of various fungi and Stramenopila isolated from Antarctica. North Am Fungi 5:215–220Google Scholar
  65. Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010b) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277:394–403CrossRefGoogle Scholar
  66. Zwally HJ, Comiso JC, Parkinson CL, Cavalieri DJ, Gloersen P (2002) Variability of Antarctic sea ice 1979–1998. J Geophys Res Oceans 107:1029–1047CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Graciéle Cunha Alves de Menezes
    • 1
  • Bárbara Alves Porto
    • 1
  • Jefferson Cardia Simões
    • 2
  • Carlos Augusto Rosa
    • 1
  • Luiz Henrique Rosa
    • 1
  1. 1.Departamento de MicrobiologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Centro Polar e Climático, Instituto de GeociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations