Skip to main content

Fungi in Snow and Glacial Ice of Antarctica

  • Chapter
  • First Online:

Abstract

Antarctica has the largest share of the planet’s ice volume. Almost the entire Antarctic continent is permanently covered in snow and ice. In ice ecosystems, the formation of ice, available liquid water and temperature considerably influence the microbial diversity and the type of microorganisms, including different species of fungi, capable of surviving and/or evolving under the extreme conditions of the cryosphere. Fungi inhabiting these ecosystems are called psychrophilic or psychrotolerant fungi, adapted to survive in the cold conditions. They possess a high genetic and physiological plasticity that makes them valuable targets for taxonomic and evolutionary studies in extreme conditions, besides performing important ecological functions in the biogeochemical cycles of these ecosystems. Within the fungal community inhabiting the snow and ice of Antarctica, some species exhibit growth and metabolic activity at low temperatures and have been investigated as a source of antifreeze substances. Although snow and ice are considered ultra-oligotrophic substrates, they have been shown to be interesting habitats for fungi, and several sampling techniques have been used to isolate and identify these microorganisms. However, studies on the diversity of fungal communities in Antarctic snow and ice are scarce, and few taxa have been identified. This chapter deals with the current scenario of diversity studies on fungi in the snow and ice of Antarctica and reviews their features, functions and biotechnological applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Psycho-tolerant microorganisms not only grow well at temperatures close to the freezing point of water but also show high growth rates above 20 °C.

  2. 2.

    Psychrophilic microorganisms show optimal growth at temperatures equal to or less than 15 °C, but cannot grow above 20 °C.

  3. 3.

    Vertical cylindrical holes that form on the ice surface with a thin layer of particles, debris and microorganisms deposited on the bottom and filled with water.

References

  • Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley, New York, pp 265–295

    Google Scholar 

  • Abyzov SS, Mitskevich IN, Poglazova MN, Barkov NI, Lipenkov VY, Bobin NE, Koudryashov BB, Pashkevich VM (1998) Long-term conservation of viable microorganisms in the ice sheet of Central Antarctica. In: Richard BH (ed) Instruments, methods, and missions for astrobiology international society for optics and photonics, San Diego, pp 75–85

    Google Scholar 

  • Abyzov SS, Hoover RB, Imura S, Mitskevich IN, Naganuma T, Poglazova MN, Ivanov MV (2004) Use of different methods for discovery of ice-entrapped microorganisms in ancient layers of the Antarctic glacier. Adv Space Res 33:1222–1230

    Article  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH, Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amato P, Doyle S, Christner BC (2009) Macromolecular synthesis by yeasts under frozen conditions. Environ Microbiol 11:589–596

    Article  CAS  PubMed  Google Scholar 

  • Anesio AM, Laybourn-Parry J (2012) Glaciers and ice sheets as a biome. Trends Ecol Evol 27:219–225

    Article  PubMed  Google Scholar 

  • Antony R, Sanyal A, Kapse N, Dhakephalkar PK, Thamban M, Nair S (2016) Microbial communities associated with Antarctic snow pack and their biogeochemical implications. Microbiol Res 192:192–202

    Article  CAS  PubMed  Google Scholar 

  • Bagshaw EA, Tranter M, Fountain AG, Welch K, Basagic HJ, Lyons WB (2013) Do cryoconite holes have the potential to be significant sources of C, N, and P to downstream depauperate ecosystems of Taylor Valley, Antarctica? Arct Antarct Alp Res 45:440–454

    Article  Google Scholar 

  • Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226

    Article  CAS  PubMed  Google Scholar 

  • Castiella MC (2014) Caracterización dinámica del glaciar Hurd combinando observaciones de campo y simulaciones numéricas. Dissertation, Polytechnic University of Madrid

    Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  CAS  PubMed  Google Scholar 

  • Comiso JC, Kwok R, Martin S, Gordon AL (2011) Variability and trends in sea ice extent and ice production in the Ross Sea. J Geophys Res Oceans 116(C4):C04021

    Article  Google Scholar 

  • Convey P, Bindschadler R, Di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski PA, Summerhayes CP, Turner J, Acce Consortium (2009) Antarctic climate change and the environment. Antarct Sci 21:541–563

    Google Scholar 

  • Cowan DA, Tow LA (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690

    Article  CAS  PubMed  Google Scholar 

  • Cowan DA, Ramond JB, Makhalanyane TP, De Maayer P (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102

    Article  CAS  PubMed  Google Scholar 

  • D’Elia T, Veerapaneni R, Rogers SO (2008) Isolation of microbes from Lake Vostok accretion ice. Appl Environ Microbiol 74:4962–4965

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Elia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763

    Article  PubMed  Google Scholar 

  • De Menezes GC, Godinho VM, Porto BA, Gonçalves VN, Rosa LH (2017) Antarctomyces pellizariae sp. nov., a new, endemic, blue, snow resident psychrophilic ascomycete fungus from Antarctica. Extremophiles 21:259–269

    Article  PubMed  Google Scholar 

  • Duman JG, Olsen TM (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30:322–328

    Article  Google Scholar 

  • Eicken H (2003) From the microscopic, to the macroscopic, to the regional scale: growth, microstructure and properties of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice-an introduction to its physics, chemistry, biology and geology, vol 25. Blackwell, Oxford, pp 22–81

    Google Scholar 

  • Elster J, Delmas RJ, Petit JR, Reháková K (2007) Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes). Biogeosci Discuss 4:1779–1813

    Article  Google Scholar 

  • Escobar-Zepeda A, Vera-Ponce de León A, Sanchez-Flores A (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348

    Article  PubMed  PubMed Central  Google Scholar 

  • Ewart KV, Lin Q, Hew CL (1999) Structure, function and evolution of antifreeze proteins. Cell Mol Life Sci 55:271–283

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200

    Article  CAS  PubMed  Google Scholar 

  • Fountain AG, Nylen TH, MacCLUNE KL, Dana GL (2006) Glacier mass balances (1993–2001), Taylor Valley, McMurdo Dry Valleys, Antarctica. J Glaciol 52:451–462

    Article  Google Scholar 

  • Gilbert JA, Hill PJ, Dodd CE, Laybourn-Parry J (2004) Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180

    Article  CAS  PubMed  Google Scholar 

  • Goodison BE, Brown RD, Crane RG, Alley R, Bales R, Barber D, Barry R, Bentley C, Carrol T, Cline D, Duguay CR, Flato GM, Hall DK, Harrington R, Kargel J, Kieffer H, Munro S, Parkinson C, Raup B, Rothrock A, Sharp M (1999) Cryospheric systems. In: King M D (ed) NASA EOS Science Plan: The State of Science in the EOS Program pp 261–307

    Google Scholar 

  • Grzesiak J, Zdanowski MK, Górniak D, Świątecki A, Aleksandrzak-Piekarczyk T, Szatraj K, Sasin-Kurowska J, Nieckarz M (2015) Microbial community changes along the Ecology Glacier ablation zone (King George Island, Antarctica). Polar Biol 38:2069–2083

    Article  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chemis Earth Parts A/B/C 28:1273–1278

    Article  Google Scholar 

  • Hassett BT, Gradinger R (2016) Chytrids dominate arctic marine fungal communities. Environ Microbiol 18:2001–2009

    Article  CAS  PubMed  Google Scholar 

  • Hodson A, Anesio AM, Ng F, Watson R, Quirk J, Irvine-Fynn T, Dye A, Clark C, McCloy P, Kohler J, Sattler B (2007) A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J Geophys Res Biogeosci 112(G4):G04S36

    Article  Google Scholar 

  • Hodson A, Anesio AM,Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial Ecosystems. Ecol Monogr 78:41–67

    Article  Google Scholar 

  • Jacobs PH, Taylor HC, Shafer JC (1964) Studies of fungi at Amundsen-Scott IGY South Pole Base. Arch Dermatol 89:117–123

    Article  CAS  PubMed  Google Scholar 

  • Knowlton C, Veerapaneni R, D’Elia RSO (2013) Microbial analyses of ancient ice core sections from Greenland and Antarctica. Biology 2:206–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre L, Ackley SF, Dieckmann GS, Gulliksen B, Horner R, Hoshiai T, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. Polar Biol 12:429–444

    Google Scholar 

  • Ma L, Catranis CM, Starmer WT, Rogers SO (1999) Revival and characterization of fungi from ancient polar ice. Mycologist 13:70–73

    Article  Google Scholar 

  • Ma LJ, Rogers SO, Catranis CM, Starmer WT (2000) Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 1:286–295

    Article  Google Scholar 

  • Maccario L, Sanguino L, Vogel TM, Larose C (2015) Snow and ice ecosystems: not so extreme. Res Microbiol 166:782–795

    Article  PubMed  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Miteva V (2008) Bacteria in snow and glacier ice. In: Margesin R (ed) Psychrophiles: from biodiversity to biotechnology, 2nd edn. Springer, Berlin, pp 31–50

    Chapter  Google Scholar 

  • Miteva V, Teacher C, Sowers T, Brenchley J (2009) Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ Microbiol 11:640–656

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Thomas DN (2005) Recent advances in sea-ice microbiology. Environ Microbiol 7:605–619

    Article  CAS  PubMed  Google Scholar 

  • Pearce DA, Bridge PD, Hughes KA, Sattler B, Psenner R, Russell NJ (2009) Microorganisms in the atmosphere over Antarctica. FEMS Microbiol Ecol 69:143–157

    Article  CAS  PubMed  Google Scholar 

  • Poindexter JS (2009) Low-Nutrient Environments. In: Schaechter M (ed) Encyclopedia of Microbiology, 3rd Elsevier, San Diego, pp 240–257

    Chapter  Google Scholar 

  • Polezhaeva TV, Zaitseva ОО, Khudyakov АN, Laptev DS, Golovchenko VV, Gordiyenko ЕА, Kuleshova LG (2014) Use of pectic polysaccharides for cryopreservation of biological objects. Arch Biol Sci 66:1025–1033

    Article  Google Scholar 

  • Powell MJ, Letcher PM, Chambers JG, Roychoudhury S. (2015) A new genus and family for the misclassified chytrid, Rhizophlyctis harderi. Mycologia 107:419-431

    Article  PubMed  Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci 97:1247–12451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Robinson DH, Kolber Z, Sullivan CW (1997) Photophysiology and photoacclimation in surface sea ice algae from McMurdo Sound, Antarctica. Mar Ecol Prog Ser 147:243–256

    Article  Google Scholar 

  • Rogers SO, Theraisnathan V, Ma LJ, Zhao Y, Zhang G, Shin SG, Castello JD, Starmer WT (2004) Comparisons of protocols for decontamination of environmental ice samples for biological and molecular examinations. Appl Environ Microbiol 70:2540–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanyal A, Antony R, Samui G, Thamban M (2018) Microbial communities and their potential for degradation of dissolved organic carbon in cryoconite hole environments of Himalaya and Antarctica. Microbiol Res 208:32–42

    Article  CAS  PubMed  Google Scholar 

  • Shtarkman YM, Koçer ZA, Edgar R, Veerapaneni RS, D’Elia T, Morris PF, Rogers SO (2013) Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya. PLoS One 8:e67221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SM, Singh PN, Singh SK, Sharma PK (2014) Pigment, fatty acid and extracellular enzyme analysis of a fungal strain Thelebolus microsporus from Larsemann Hills, Antarctica. Pol Polar Rec 50:31–36

    Article  Google Scholar 

  • Telling J, Anesio AM, Tranter M, Irvine-Fynn T, Hodson A, Butler C, Wadham J (2011) Nitrogen fixation on Arctic glaciers, Svalbard. J Geophys Res Biogeosci 116(G3):1–8

    Google Scholar 

  • Thomas-Hall S, Watson K (2002) Cryptococcus nyarrowii sp. nov., a basidiomycetous yeast from Antarctica. Int J Syst Evol Microbiol 52:1033–1038

    CAS  PubMed  Google Scholar 

  • Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59

    Article  CAS  PubMed  Google Scholar 

  • Tibbett M, Sanders FE, Cairney JW (1998) The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol Res 102(2):129–135

    Article  CAS  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  CAS  PubMed  Google Scholar 

  • Vaughan DG, Comiso JC, Allison CJ, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E (2013) Observations: cryosphere. Clim Chang 2103:317–382

    Google Scholar 

  • Wadhams P, Comiso JC (1992) The ice thickness distribution inferred using remote sensing techniques. In: Carsey FD (ed), Geophysical Monograph Book Series, American Geophysical Union, Washington DC, pp 375-383

    Google Scholar 

  • Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 1:222–229

    Article  Google Scholar 

  • Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19:141–147

    Article  PubMed  Google Scholar 

  • Xiao N, Inaba S, Tojo M, Degawa Y, Fujiu S, Kudoh S, Hoshino T (2010a) Antifreeze activities of various fungi and Stramenopila isolated from Antarctica. North Am Fungi 5:215–220

    Google Scholar 

  • Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010b) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277:394–403

    Article  CAS  PubMed  Google Scholar 

  • Zwally HJ, Comiso JC, Parkinson CL, Cavalieri DJ, Gloersen P (2002) Variability of Antarctic sea ice 1979–1998. J Geophys Res Oceans 107:1029–1047

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Menezes, G.C.A., Porto, B.A., Simões, J.C., Rosa, C.A., Rosa, L.H. (2019). Fungi in Snow and Glacial Ice of Antarctica. In: Rosa, L. (eds) Fungi of Antarctica. Springer, Cham. https://doi.org/10.1007/978-3-030-18367-7_6

Download citation

Publish with us

Policies and ethics