Skip to main content

Realism, Non-Contextuality, Local Causality, Entanglement

  • Chapter
  • First Online:
Fundamental Mathematical Structures of Quantum Theory

Abstract

We have accumulated enough theoretical material to tackle some aspects of an important and intriguing issue regarding the theoretical interpretation of the quantum realm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These sets of observables S represent the most classical structures one may extract form the whole set of observables of a quantum system. The fact that these structures are distinct and physically incompatible is one manifestation of Bohr’s complementarity principle.

  2. 2.

    For instance, if aσ x ⊗ I + bI ⊗ σ x + cσ x ⊗ σ x = 0, multiplying by σ a ⊗ I or I ⊗ σ a and computing the partial trace gives a = b = c = 0 easily, because tr(σ a) = 0, tr(σ a σ b) = 2δ ab.

  3. 3.

    A more complete model would include the state’s skew-symmetry (the electrons may be swapped), but we shall disregard details such as this one. When dealing with photons the spin must be replaced by the polarization, which is still described on \({\mathbb C}^2\), and the positions x i by the momenta k i; in this case the state must be symmetric when swapping the photons.

  4. 4.

    The original paper of Bell [Bel64] presented a slightly less general inequality.

  5. 5.

    The author is grateful to S.Mazzucchi for many clarifications and discussions on subtleties related to the content of this section.

References

  1. V. D’Ambrosio, I. Herbauts, E. Amselem, E. Nagali, M. Bourennane, F. Sciarrinoi, A. Cabello, Experimental implementation of a Khochen-Specker set of quantum tests. Phys. Rev. X 3, 011012 (2013)

    Google Scholar 

  2. E.G. Beltrametti, G. Cassinelli, The Logic of Quantum Mechanics. Encyclopedia of Mathematics and Its Applications, vol. 15 (Addison-Wesley, Reading, 1981)

    Google Scholar 

  3. R. Bertlmann, A. Zeilinger (eds.), Quantum [Un]Speakables II. Half a Century of Bell’s Theorem (Springer, Cham, 2017)

    Google Scholar 

  4. J.S. Bell, On the Einstein Podolski Rosen paradox. Physics 1, 195–200 (1964)

    Article  Google Scholar 

  5. J.S. Bell, On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  6. J.S. Bell, The theory of local beables (1974) in Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  7. H. Bartosik, J. Klepp, C. Schmitzer, S. Sponar, A. Cabello, H. Rauch, Y. Hasegawa, Experimental test of quantum contextuality in neutron interferometry. Phys. Rev. Lett. 103, 040403 (2009)

    Article  ADS  Google Scholar 

  8. A. Cabello, How many questions do you need to prove that unasked questions have no answers? Int. J. Quantum Inf. 04, 55 (2006)

    Article  Google Scholar 

  9. D. Dürr, S. Teufel, Bohmian Mechanics (Springer, Heidelberg, 2009)

    MATH  Google Scholar 

  10. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  11. J.C. Garrison, R.Y. Chiao, Quantum Optics (Oxford University Press, Oxford, 2008)

    Book  Google Scholar 

  12. G. Ghirardi, Sneaking a Look at God’s Cards: Unraveling the Mysteries of Quantum Mechanics, 25 Mar 2007, rev. edn. (Princeton University Press, Princeton, 2007)

    Google Scholar 

  13. R. Hanson et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

    Article  ADS  Google Scholar 

  14. Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, H. Rauch, Quantum contextuality in a single-neutron optical experiment. Phys. Rev. Lett. 97, 230401 (2006)

    Article  ADS  Google Scholar 

  15. Y.-F. Huang, C.-F. Li, Y.-S. Zhang, J.-W. Pan, G.-C. Guo, Realization of all-or-nothing-type Kochen-Specker experiment with single photons. Phys. Rev. Lett. 90, 250401 (2003)

    Article  ADS  Google Scholar 

  16. J.P. Jarret, On the physical significance of the locality conditions in the Bell arguments. Nous 18(4), 569–589 (1984), Special Issue on the Foundations of Quantum Mechanics

    Article  MathSciNet  Google Scholar 

  17. G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt, C.F. Roos, State-independent experimental test of quantum contextuality. Nature 460, 494 (2009)

    Article  ADS  Google Scholar 

  18. S. Kochen, E. Specker, The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  19. K. Landsman, Foundations of Quantum Theory (Springer, New York, 2017)

    Book  Google Scholar 

  20. N.D. Mermin, Simple unified form for no-hidden-variables theorems. Phys. Rev. Lett. 65, 3373–3376 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Michler, H. Weinfurter, M. Zukowski, Experiments towards falsification of noncontextual hidden variable theories. Phys. Rev. Lett. 84, 5457 (2000)

    Article  ADS  Google Scholar 

  22. A. Peres, Incompatible results of quantum measurements. Phys. Lett. A 151, 107–108 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Redéi, Quantum Logic in Algebraic Approach (Kluwer Academic Publishers, Dordrecht, 1998)

    Book  Google Scholar 

  24. The Stanford Encyclopedia of Philosophy http://plato.stanford.edu/

  25. A. Shimony, in 62 Years of Uncertainty, ed. by A.I. Miller (Plenum Press, New York, 1990), p. 33

    Chapter  Google Scholar 

  26. B.S. Tsirelson, Quantum Generalizations of Bell’s Inequality. Lett. Math. Phys. 4, 93 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  27. R. Tumulka, Bohmian Mechanics, in The Routledge Companion to the Philosophy of Physics, ed. by E. Knox, A. Wilson (Routledge, New York, 2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moretti, V. (2019). Realism, Non-Contextuality, Local Causality, Entanglement. In: Fundamental Mathematical Structures of Quantum Theory. Springer, Cham. https://doi.org/10.1007/978-3-030-18346-2_5

Download citation

Publish with us

Policies and ethics