Skip to main content

Cryogenic-CMOS for Quantum Computing

  • Chapter
  • First Online:
NANO-CHIPS 2030

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

In the 2010s quantum technologies have emerged as a compelling complement to classical technologies for a number of applications, including quantum sensing, metrology, imaging, communications, security, and computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. L. Vandersypen, Quantum computing—the next challenge in circuit and system design, in International Solid-State Circuits Conference, San Francisco, CA (2017)

    Google Scholar 

  3. H. Bluhm, L.R. Schreiber, Semiconductor spin qubits—a scalable platform for quantum computing?, in IEEE International Symposium on Circuits and Systems, Sapporo, Japan (2019)

    Google Scholar 

  4. M.A. Rol, C.C. Bultink, T.E. O’Brien, S.R. de Jong, L.S. Theis, X. Fu, F. Luthi, R.F.L. Vermeulen, J.C. de Sterke, A. Bruno, D. Deurloo, R.N. Schouten, F.K. Wilhelm, L. DiCarlo, Restless tuneup of high-fidelity qubit gates. Phys. Rev. Appl. 7(4), 041001 (2017)

    Article  ADS  Google Scholar 

  5. J. Heinsoo, C.K. Andersen, A. Remm, S. Krinner, T. Walter, Y. Salathé, S. Gasparinetti, J.-C. Besse, A. Potocnik, A. Wallraff, C. Eichler, Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl. 10(3), 034040 (2018)

    Article  ADS  Google Scholar 

  6. M. Veldhorst, J.C.C. Hwang, C.H. Yang, A.W. Leenstra, B. de Ronde, J.P. Dehollain, J.T. Muhonen, F.E. Hudson, K.M. Itoh, A. Morello, A.S. Dzurak, An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014)

    Article  ADS  Google Scholar 

  7. J.T. Muhonen, J.P. Dehollain, A. Laucht, F.E. Hudson, R. Kalra, T. Sekiguchi, K.M. Itoh, D.N. Jamieson, J.C. Mccallum, A.S. Dzurak, A. Morello, Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 9(12), 986–991 (2014)

    Article  ADS  Google Scholar 

  8. D.M. Zajac, A.J. Sigillito, M. Russ, F. Borjans, J.M. Taylor, G. Burkard, J.R. Petta, Resonantly driven CNOT gate for electron spins. Science 359(6374), 439–442 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M.R. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi, N. Usami, K.M. Itoh, S. Tarucha, A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018)

    Article  ADS  Google Scholar 

  10. J.P. Gaebler, T.R. Tan, Y. Lin, Y. Wan, R. Bowler, A.C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D.J. Wineland, High-fidelity universal gate set for 9Be+ ion qubits. Phys. Rev. Lett. 117(6–5), 060505 (2016)

    Article  ADS  Google Scholar 

  11. L. Petit, J.M. Boter, H.G.J. Eenink, G. Droulers, M.L.V. Tagliaferri, R. Li, D.P. Franke, K.J. Singh, J.S. Clarke, R.N. Schouten, V.V. Dobrovitski, L.M.K. Vandersypen, M. Veldhorst, Spin lifetime and charge noise in hot silicon quantum dot qubits. Phys. Rev. Lett. 121(7–17), 076801 (2018)

    Article  ADS  Google Scholar 

  12. C.H. Yang, R.C.C. Leon, J.C.C. Hwang, A. Saraiva, T. Tanttu, W. Huang, J. Camirand Lemyre, K.W. Chan, K.Y. Tan, F.E. Hudson, K.M. Itoh, A. Morello, M. Pioro-Ladrière, A. Laucht, A.S. Dzurak, Silicon quantum processor unit cell operation above one Kelvin. arXiv preprint arXiv:1902.09126

  13. T. Watson, S. Philips, E. Kawakami, D. Ward, P. Scarlino, M. Veldhorst, D. Savage, M. Lagally, M. Friesen, S. Coppersmith et al., A programmable two-qubit quantum processor in silicon. Nature 555(7698), 633 (2018)

    Article  ADS  Google Scholar 

  14. J. Elzerman, R. Hanson, L.W. Van Beveren, B. Witkamp, L. Vandersypen, L.P. Kouwenhoven, Single-shot read-out of an individual electron spin in a quantum dot. Nature 430(6998), 431 (2004)

    Article  ADS  Google Scholar 

  15. L. Vandersypen, J. Elzerman, R. Schouten, L. Willems van Beveren, R. Hanson, L. Kouwenhoven, Real-time detection of single-electron tunneling using a quantum point contact. Appl. Phys. Lett. 85(19), 4394–4396 (2004)

    Article  ADS  Google Scholar 

  16. I. Vink, T. Nooitgedagt, R. Schouten, L. Vandersypen, W. Wegscheider, Cryogenic amplifier for fast real-time detection of single-electron tunneling. Appl. Phys. Lett. 91(12), 123512 (2007)

    Article  ADS  Google Scholar 

  17. E.A. Laird, J.M. Taylor, D.P. DiVincenzo, C.M. Marcus, M.P. Hanson, A.C. Gossard, Coherent spin manipulation in an exchange-only qubit. Phys. Rev. B 82(7), 075403 (2010)

    Article  ADS  Google Scholar 

  18. D. Reilly, C. Marcus, M. Hanson, A. Gossard, Fast single-charge sensing with a RF quantum point contact. Appl. Phys. Lett. 91(16), 162101 (2007)

    Article  ADS  Google Scholar 

  19. J. Hornibrook, J. Colless, A. Mahoney, X. Croot, S. Blanvillain, H. Lu, A. Gossard, D. Reilly, Frequency multiplexing for readout of spin qubits. Appl. Phys. Lett. 104(10), 103108 (2014)

    Article  ADS  Google Scholar 

  20. E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle, S. Visser, L. Song, R.M. Incandela, Cryo-CMOS for quantum computing, in International Electron Device Meeting, San Francisco, CA (2016)

    Google Scholar 

  21. J.D. Cressler, H.A. Mantooth (eds.), Extreme environment electronics (CRC Press, Boca Raton, FL, 2013)

    Google Scholar 

  22. J.D. Cressler, J.H. Comfort, E.F. Crabbé, J.M.C. Stork, J.Y.-C. Sun, On the profile design and optimization of epitaxial Si- and SiGe-base bipolar technology for 77 K applications. I. Transistor DC design considerations. IEEE Trans. Electron Devices 40(3), 525–541 (1993)

    Article  ADS  Google Scholar 

  23. L. Najafizadeh, J.S. Adams, S.D. Phillips, K.A. Moen, J.D. Cressler, S. Aslam, T.R. Stevenson, R.M. Meloy, Sub-1-K Operation of SiGe Transistors and Circuits. IEEE Electron Device Lett. 30(5), 508–510 (2009)

    Article  ADS  Google Scholar 

  24. S.R. Ekanayake, T. Lehmann, A.S. Dzurak, R.G. Clark, A. Brawley, Characterization of SOS-CMOS FETs at low temperatures for the design of integrated circuits for quantum bit control and readout. IEEE Trans. Electron Devices 57(2), 539–547 (2010)

    Article  ADS  Google Scholar 

  25. T. Lehmann, Cryogenic support circuits and systems for silicon quantum computers, in IEEE International Symposium on Circuits and Systems, Sapporo, Japan (2019)

    Google Scholar 

  26. C.H. Yang, R.C.C. Leon, J.C.C. Hwang, A. Saraiva, T. Tanttu, W. Huang, J. Camirand Lemyre, K.W. Chan, K.Y. Tan, F.E. Hudson, K.M. Itoh, A. Morello, M. Pioro-Ladrière, A. Laucht, A.S. Dzurak, Silicon quantum processor unit cell operation above one Kelvin (2019). arXiv:1902.09126

  27. J. van Dijk, E. Kawakami, R.N. Schouten, M. Veldhorst, L.M.K. Vandersypen, M. Babaie, E. Charbon, F. Sebastiano, The impact of classical control electronics on qubit fidelity (2019). arXiv:1803.06176

  28. J. van Dijk, E. Charbon, F. Sebastiano, The electronic interface for quantum processors. Microprocess. Microsyst. 66, 90–101 (2019)

    Article  Google Scholar 

  29. C. Degenhardt, A. Artanov, L. Geck, C. Grewing, A. Kruth, D. Nielinger, P. Vliex, A. Zambanini, S. van Waasen, Systems engineering of cryogenic CMOS electronics for scalable quantum computers, in IEEE International Symposium on Circuits and Systems, Sapporo, Japan (2019)

    Google Scholar 

  30. J.C. Bardin, E. Jeffrey, E. Lucero, T. Huang, O. Naaman, R. Barends, T. White, M. Giustina, D. Sank, P. Roushan, K. Arya, B. Chiaro, J. Kelly, J. Chen, B. Burkett, Y. Chen, A. Dunsworth, A. Fowler, B. Foxen, C. Gidney, R. Graff, P. Klimov, J. Mutus, M. McEwen, A. Megrant, M. Neeley, C. Neill, C. Quintana, A. Vainsencher, H. Neven, J. Martinis, A 28 nm Bulk-CMOS 4-to-8 GHz 2mW cryogenic pulse modulator for scalable quantum computing, in International Solid-State Circuits Conference, San Francisco, CA (2019)

    Google Scholar 

  31. A. Beckers, F. Jazaeri, H. Bohuslavskyi, L. Hutin, S. De Franceschi, C. Enz, Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures. Solid-State Electron. 159, 106–115 (2019)

    Article  ADS  Google Scholar 

  32. R.M. Incandela, L. Song, H. Homulle, E. Charbon, A. Vladimirescu, F. Sebastiano, Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures. IEEE J. Electron Devices Soc. 6, 996–1006 (2018)

    Article  Google Scholar 

  33. P.A. ’t Hart, J. van Dijk, M. Babaie, E. Charbon, A. Vladimirescu, F. Sebastiano, Characterization and model validation of mismatch in nanometer CMOS at cryogenic temperatures, in IEEE European Solid-State Circuits Conference, Dresden, Germany (2018)

    Google Scholar 

  34. P.A. ’t Hart, M. Babaie, E. Charbon, A. Vladimirescu, F. Sebastiano, Subthreshold mismatch in nanometer CMOS at cryogenic temperatures, in IEEE European Solid-State Circuits Conference, Krakow, Poland (2019)

    Google Scholar 

  35. F. Sebastiano, H. Homulle, B. Patra, R.M. Incandela, J. van Dijk, L. Song, M. Babaie, A. Vladimirescu, E. Charbon, Cryo-CMOS electronic control for scalable quantum computing, in Design Automation Conference, Austin, TX (2017)

    Google Scholar 

  36. B. Patra, R.M. Incandela, J. van Dijk, H. Homulle, L. Song, M. Shahmohammadi, R.B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, E. Charbon, Cryo-CMOS circuits and systems for quantum computing applications. IEEE J. Solid-State Circuits 53(1), 309–321 (2018)

    Article  ADS  Google Scholar 

  37. H. Homulle, F. Sebastiano, E. Charbon, Deep-cryogenic voltage references in 40-nm CMOS. IEEE Solid-State Circuits Lett. 1(5), 110–113 (2018)

    Article  Google Scholar 

  38. J. van Staveren, C. Garcia Almudever, G. Scappucci, M. Veldhorst, M. Babaie, E. Charbon, F. Sebastiano, Voltage references for the ultra-wide temperature range from 4.2 K to 300 K in 40-nm CMOS, in Proceedings of ESSCIRC 2019 (2019)

    Google Scholar 

  39. H. Homulle, E. Charbon, Cryogenic low-dropout voltage regulators for stable low-temperature electronics. Cryogenics 95, 11–17 (2018)

    Article  ADS  Google Scholar 

  40. S. Schaal, A. Rossi, V.N. Ciriano-Tejel, T.-Y. Yang, S. Barraud, J.J.L. Morton, M.F. Gonzalez-Zalba, A CMOS dynamic random access architecture for radio-frequency readout of quantum devices. Nat. Electron. 2, 236–242 (2019)

    Article  Google Scholar 

  41. R. Li, L. Petit, D.P. Franke, J.P. Dehollain, J. Helsen, M. Steudtner, N.K. Thomas, Z.R. Yoscovits, K.J. Singh, S. Wehner, L.M.K. Vandersypen, J.S. Clarke, M. Veldhorst, A crossbar network for silicon quantum dot qubits (2017). arXiv:1711.03807

  42. A. Ruffino, Y. Peng, F. Sebastiano, M. Babaie, E. Charbon, A 6.5-GHz cryogenic all-pass filter circulator in 40-nm CMOS for quantum computing applications, in IEEE RFIC, Boston, MA (2019)

    Google Scholar 

  43. F. Bruccoleri, E.A.M. Klumperink, B. Nauta, Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE J. Solid-State Circuits 39(2), 275–282 (2004)

    Article  ADS  Google Scholar 

  44. H. Homulle, S. Visser, B. Patra, G. Ferrari, E. Prati, F. Sebastiano, E. Charbon, A reconfigurable cryogenic platform for the classical control of scalable quantum computers (2016). arXiv:1602.05786

  45. H. Homulle, S. Visser, B. Patra, G. Ferrari, E. Prati, F. Sebastiano, E. Charbon, A reconfigurable cryogenic platform for the classical control of quantum processors. Rev. Sci. Instrum. 88(4), 045103 (2017)

    Article  ADS  Google Scholar 

  46. H. Homulle, S. Visser, E. Charbon, A cryogenic 1 GSa/s, soft-core FPGA ADC for quantum computing applications. IEEE Trans. Circuits Syst. I 63(11), 1854–1865 (2016)

    Article  Google Scholar 

  47. R.B. Staszewski et al., All-digital PLL and transmitter for mobile phones. IEEE J. Solid-State Circuits 40(12), 2469–2482 (2005)

    Article  ADS  Google Scholar 

  48. A. Elkholy, A. Elmallah, M.G. Ahmed, P.K. Hanumolu, A 6.75–8.25-GHz 250-dB FoM rapid on/off fractional-N injection-locked clock multiplier. IEEE J. Solid-State Circuits 53(6), 1818–1829 (2018)

    Article  ADS  Google Scholar 

  49. J. Gong, Y. He, A. Ba, Y.-H. Liu, J. Dijkhuis, S. Traferro, C. Bachmann, K. Philips, M. Babaie, A 1.33 mW, 1.6 psrms-integrated-jitter, 1.8–2.7 GHz ring-oscillator-based fractional-N injection-locked DPLL for internet-of-things applications, in 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2018, pp. 44–47

    Google Scholar 

  50. M. Mehrpoo et al., Benefits and challenges of designing cryogenic CMOS RF circuits for quantum computers, in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan (2019), pp. 1–5

    Google Scholar 

  51. J. Ekin, Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing (Oxford University Press, 2006)

    Google Scholar 

  52. A. Coskun, J. Bardin, Cryogenic small-signal and noise performance of 32 nm SOI CMOS, in Microwave Symposium (IMS) (2014), pp. 1–4

    Google Scholar 

  53. J. Wang, X.-M. Peng, Z.-J. Liu, L. Wang, Z. Luo, D.-D. Wang, Observation of nonconservation characteristics of radio frequency noise mechanism of 40-nm n-MOSFET. Chin. Phys. B 27(2), 027201 (2018)

    Article  ADS  Google Scholar 

  54. X. Chen, C.-H. Chen, R. Lee, Fast evaluation of the high-frequency channel noise in nanoscale MOSFETs. IEEE Trans. Electron Devices 65(4), 1502–1509 (2018)

    Article  ADS  Google Scholar 

  55. J. Chang, A. Abidi, C. Viswanathan, Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures. IEEE Trans. Electron Devices 41(11), 1965–1971 (1994)

    Article  ADS  Google Scholar 

  56. K. Hung, P. Ko, C. Hu, Y. Cheng, Flicker noise characteristics of advanced MOS technologies, in Electron Devices Meeting, 1988. IEDM’88. Technical Digest., International (IEEE, 1988), pp. 34–37

    Google Scholar 

  57. M. Shahmohammadi, M. Babaie, R.B. Staszewski, A 1/f noise upconversion reduction technique for voltage-biased RF CMOS oscillators. IEEE J. Solid-State Circuits 51(11), 2610–2624 (2016)

    Article  ADS  Google Scholar 

  58. D. Murphy, H. Darabi, H. Wu, Implicit common-mode resonance in LC oscillators. IEEE J. Solid-State Circuits 52(3), 812–821 (2017)

    Article  ADS  Google Scholar 

  59. J. Gong, Y. Chen, F. Sebastiano, E. Charbon, M. Babaie, A 200 dB FOM 4–5 GHz cryogenic oscillator with an automatic common-mode resonance calibration for quantum computing applications, in International Solid-State Circuits Conference, San Francisco, CA (2020) (accepted)

    Google Scholar 

  60. L. Riesebos, X. Fu, A.A. Moueddenne, L. Lao, S. Varsamopoulos, I. Ashraf, J. van Someren, N. Khammassi, C.G. Almudever, K. Bertels, Quantum accelerated computer architectures, in IEEE International Symposium on Circuits and Systems, Sapporo, Japan (2019); F. Sebastiano, L.J. Breems, K.A.A. Makinwa, S. Drago, D.M.W. Leenaerts, B. Nauta, A 1.2-V 10-µW NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2 °C (3σ) from −70 °C to 125 °C. IEEE J. Solid-State Circuits 45(12), 2591–2601 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the members of the coolgroup: the analysis tools, circuits, and systems presented here have been designed and tested by them, and to Intel Corp. for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Charbon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charbon, E., Sebastiano, F., Babaie, M., Vladimirescu, A. (2020). Cryogenic-CMOS for Quantum Computing. In: Murmann, B., Hoefflinger, B. (eds) NANO-CHIPS 2030. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-030-18338-7_26

Download citation

Publish with us

Policies and ethics