Skip to main content

High-Speed 3D Memories Enabling the AI Future

  • 1858 Accesses

Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

AI (Artificial Intelligence) is all about possessing a high volume of unstructured data and then needing to process it at high speed. DRAM today is the technology of choice for memory in such AI systems. Yet, DRAM’s high energy per bit and the diminishing scaling of DRAM represent a real challenge for the AI system’s future. This chapter covers solutions utilizing technologies similar to those currently used in 3D NAND for high speed memory.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-18338-7_10
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-18338-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3

Source IDC

Fig. 10.4
Fig. 10.5
Fig. 10.6
Fig. 10.7
Fig. 10.8
Fig. 10.9

References

  1. S. Mueller et al., Incipient ferroelectricity in Al-doped HfO2 thin films. Adv. Funct. Mater. 22(11), 2412–2417 (2012)

    CrossRef  Google Scholar 

  2. J. Müller et al., Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories, in 2013 IEEE International Electron Devices Meeting (IEEE, 2013)

    Google Scholar 

  3. H.C. Wann, C. Hu, High-endurance ultra-thin tunnel oxide in MONOS device structure for dynamic memory application. IEEE Electron Device Lett. 16(11), 491–493 (1995)

    ADS  CrossRef  Google Scholar 

  4. H.I. Hanafi et al., A scalable low power vertical memory, in Proceedings of International Electron Devices Meeting (IEEE, 1995)

    Google Scholar 

  5. K. Tsunoda et al., Ultra-high speed direct tunneling memory (DTM) for embedded RAM applications, in Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004 (IEEE, 2004)

    Google Scholar 

  6. Patents: US 7,848,148, US 8,705,278

    Google Scholar 

  7. Patents: US 6,249,460, US 6,639,835, US 6,730,960

    Google Scholar 

  8. J. Cooke, Flash Memory 101: An Introduction to NAND Flash. EE Times, 20 Mar 2006

    Google Scholar 

  9. Patents: US 8,203,187, US 8,426,294

    Google Scholar 

  10. Patents: US 10,014,318 and PCT application WO 2017/053329

    Google Scholar 

  11. Patents: US 9,842,651, US 9,892,800, US 9,911,497

    Google Scholar 

  12. Patent application: WO/2018/144957

    Google Scholar 

  13. S.-J. Choi et al., Performance breakthrough in NOR flash memory with dopant-segregated Schottky-barrier (DSSB) SONOS devices, in 2009 Symposium on VLSI Technology (IEEE, 2009)

    Google Scholar 

  14. S.-J. Choi et al., A novel TFT with a laterally engineered bandgap for of 3D logic and flash memory, in 2010 Symposium on VLSI Technology (IEEE, 2010)

    Google Scholar 

  15. C.-H. Shih et al., Source-side injection Schottky barrier flash memory cells. Semicond. Sci. Technol. 24(2), 025013 (2009)

    ADS  MathSciNet  CrossRef  Google Scholar 

  16. C.-H. Shih et al., Schottky barrier silicon nanowire SONOS memory with ultralow programming and erasing voltages. IEEE Electron Device Lett. 32(11), 1477–1479 (2011)

    ADS  CrossRef  Google Scholar 

  17. Y. Noh et al., Synaptic devices based on 3-D AND flash memory architecture for neuromorphic computing, in IEEE International Memory Workshop (IMW) (2019)

    Google Scholar 

  18. H.-T. Lue et al., A novel 3D AND-type NVM architecture capable of high-density, low-power in-memory sum-of-product computation for artificial intelligence application, in 2018 IEEE Symposium on VLSI Technology (IEEE, 2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Or-Bach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Or-Bach, Z. (2020). High-Speed 3D Memories Enabling the AI Future. In: Murmann, B., Hoefflinger, B. (eds) NANO-CHIPS 2030. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-030-18338-7_10

Download citation