Skip to main content

A Generic Evolutionary Algorithm for Efficient Multi-Robot Task Allocations

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11489)

Abstract

Task allocation in multi-robot teams is conventionally carried out using customized algorithms against individual distributions due to their NP-hard nature. The expanding range of autonomous multi-robot operations demands for a generic allocation scheme capable of working across a variety of problem distributions. This paper presents an intelligently crafted, novel, evolutionary algorithm based task allocation scheme capable of working across a range of multi-robot problem distributions. Qualitative analysis against exact optimal solutions and a state of the art auction based scheme verify the capabilities of the proposed algorithm.

Keywords

  • Multi-Robot Task Allocation
  • Plan formulation
  • Evolutionary algorithm
  • Optimization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-18305-9_49
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-18305-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23, 939–954 (2004)

    CrossRef  Google Scholar 

  2. Sen, S.D., Adams, J.A.: An influence diagram based multi-criteria decision making framework for multirobot coalition formation. Auton. Agent. Multi-Agent Syst. 29, 1061–1090 (2015)

    CrossRef  Google Scholar 

  3. Gerkey, B.P., Mataric, M.J.: Multi-robot task allocation: analyzing the complexity and optimality of key architectures. In: IEEE – ICRA, vol. 3, pp. 3862–3868 (2003)

    Google Scholar 

  4. Arif, M.U., Haider, S.: A flexible evolutionary algorithm for task allocation in multi-robot team. In: Nguyen, N.T., Pimenidis, E., Khan, Z., Trawiński, B. (eds.) ICCCI 2018. LNCS (LNAI), vol. 11056, pp. 89–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98446-9_9

    CrossRef  Google Scholar 

  5. Arif, M.U., Haider, S.: An evolutionary traveling salesman approach for multi-robot task allocation. In: 9th International Conference on Agents and Artificial Intelligence, pp. 567–574 (2017)

    Google Scholar 

  6. Koenig, S., et al.: The power of sequential single-item auctions for agent coordination. In: Proceedings of the National Conference on Artificial Intelligence. p. 1625. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman Arif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Arif, M.U. (2019). A Generic Evolutionary Algorithm for Efficient Multi-Robot Task Allocations. In: Meurs, MJ., Rudzicz, F. (eds) Advances in Artificial Intelligence. Canadian AI 2019. Lecture Notes in Computer Science(), vol 11489. Springer, Cham. https://doi.org/10.1007/978-3-030-18305-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18305-9_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18304-2

  • Online ISBN: 978-3-030-18305-9

  • eBook Packages: Computer ScienceComputer Science (R0)