Skip to main content

Origin and Evolution of Nervous Systems

  • Chapter
  • First Online:
Book cover Old Questions and Young Approaches to Animal Evolution

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Nervous systems integrate environmental and internal inputs to coordinate appropriate sometimes systems-level responses. Complex central nervous systems containing a brain and nerve cord(s) gained cognition, effectively forever changing the way in which organisms interact and adapt to their environment. How did such an incredible organ evolve? Classical views argue nervous systems and later centralization each occurred once in animal evolution, but over the last 15–20 years, rapid advances in molecular and genetic approaches as well as studies in a broader number of species provide surprising insights that force us to revisit the origin and evolution of nervous systems. In addition to causing biologists to reassess previous dogma, modern approaches provide a path forward to better address the age-old question: where did our brain come from? This chapter reviews our understanding of nervous system evolution through the lens of developmental biology. We focus on the emerging ideas that nervous systems may have evolved multiple times in animal evolution and revisit the evidence that argues centralization of nervous systems evolved once. We conclude with a brief discussion about the insights that can be gained by applying modern approaches in developmental biology to understand nervous system evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achatz JG, Martinez P (2012) The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Front Zool 9:1–21

    Article  Google Scholar 

  • Arendt D, Nübler-Jung K (1999) Comparison of early nerve cord development in insects and vertebrates. Development 126:2309–2325

    CAS  PubMed  Google Scholar 

  • Atasoy D, Schoch S, Ho A, Nadasy KA, Liu X, Zhang W, Mukherjee K, Nosyreva ED, Fernandez-Chacon R, Missler M et al (2007) Deletion of CASK in mice is lethal and impairs synaptic function. PNAS 104:2525–2530

    Article  CAS  Google Scholar 

  • Burkhardt P (2015) The origin and evolution of synaptic proteins – choanoflagellates lead the way. J Exp Biol 218:506–514

    Article  Google Scholar 

  • Burkhardt P, Stegmann CM, Cooper B, Kloepper TH, Imig C, Veroqueaux F, Wahl MC, Fasshauer D (2011) Primordial neurosecretory apparatus identified in the choanoflagellate Monosiga brevicollis. PNAS 108:15264–15269

    Article  CAS  Google Scholar 

  • Craig AM, Kang Y (2007) Neurexin–neuroligin signaling in synapse development. Curr Opin Neurobiol 17:43–52

    Article  CAS  Google Scholar 

  • Denes AS, Jékely G, Steinmetz PRH, Raible F, Snyman H, Prud’homme B, Ferrier DEK, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129:277–288

    Article  CAS  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  CAS  Google Scholar 

  • Dupre C, Yuste R (2017) Non-overlapping neural networks in Hydra vulgaris. Curr Biol 27:1085–1097

    Article  CAS  Google Scholar 

  • Esteves FF, Springhorn A, Kague E, Taylor E, Pyrowolakis G, Fisher S, Bier E (2014) BMPs regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by distinct mechanisms. PLoS Genet 10:e1004625

    Article  Google Scholar 

  • Francois V, Solloway M, ONeill JW, Emery J, Bier E (1994) Dorsal-ventral patterning of the Drosophila embryo depends on the putative negative growth factor encoded by the short gastrulation gene. Genes Dev 8:2602–2616

    Article  CAS  Google Scholar 

  • Galliot B, Quiquand M, Ghila L, de Rosa R, Miljkovic-Licina M, Chera S (2009) Origins of neurogenesis, a cnidarian view. Dev Biol 332:2–24

    Article  CAS  Google Scholar 

  • Hinman VF, Burke RD (2018) Embryonic neurogenesis in echinoderms. WIREs Dev Biol 7:e316

    Article  Google Scholar 

  • Hobert O, Carrera I, Stefanakis N (2010) The molecular and gene regulatory signature of a neuron. Trends Neurosci 33:435–445

    Article  CAS  Google Scholar 

  • Holland ND (2003) Early central nervous system evolution: an era of skin brains? Nat Rev Neurosci 4:617–627

    Article  CAS  Google Scholar 

  • Holland LZ, Carvalho JOE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu J-K (2013) Evolution of bilaterian central nervous systems: a single origin? EvoDevo 4:27

    Article  Google Scholar 

  • Jager M, Chiori R, Alié A, Dayraud C, Quéinnec E, Manuel M (2010) New insights on ctenophore neural anatomy: immunofluorescence study in Pleurobrachia pileus (Müller, 1776). J Exp Zool 316B:171–187

    Article  Google Scholar 

  • Käsbauer T, Towb P, Alexandrova O, David CN, Dall’Armi E, Staudigl A, Stiening B, Böttger A (2007) The Notch signaling pathway in the cnidarian Hydra. Dev Biol 303:376–390

    Article  Google Scholar 

  • Lambert JD, Johnson AB, Hudson CN, Chan A (2016) Dpp/BMP2-4 mediates signaling from the D-quadrant organizer in a spiralian embryo. Curr Biol 26:2003–2010

    Article  CAS  Google Scholar 

  • Layden MJ, Meyer NP, Pang K, Seaver EC, Martindale MQ (2010) Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans. EvoDevo 1:12

    Article  CAS  Google Scholar 

  • Layden MJ, Boekhout M, Martindale MQ (2012) Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development 139:1013–1022

    Article  CAS  Google Scholar 

  • Leclère L, Bause M, Sinigaglia C, Steger J, Rentzsch F (2016) Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8. Development 143:1766–1777

    Article  Google Scholar 

  • Li X, Martinson AS, Layden MJ, Diatta FH, Sberna AP, Simmons DK, Martindale MQ, Jegla TJ (2015) Ether-a-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor. J Exp Biol 218:526–536

    Article  Google Scholar 

  • Liebeskind BJ, Hillis DM, Zakon HH (2015) Convergence of ion channel genome content in early animal evolution. Proc Natl Acad Sci U S A 112:E846–E851

    Article  CAS  Google Scholar 

  • Lowe CJ, Wu M, Salic A, Evans L, Lander E, Strange-Thomann N, Gruber CE, Gerhart J, Kirschner M (2003) Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113:853–865

    Article  CAS  Google Scholar 

  • Lowe CJ, Terasaki M, Wu M, Freeman RM, Runft L, Kwan K, Haigo S, Aronowicz J, Lander E, Gruber C et al (2006) Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol 4:e291

    Article  Google Scholar 

  • Marlow H, Matus DQ, Martindale MQ (2013) Ectopic activation of the canonical wnt signaling pathway affects ectodermal patterning along the primary axis during larval development in the anthozoan Nematostella vectensis. Dev Biol 380:324–334

    Article  CAS  Google Scholar 

  • Martín-Durán JM, Pang K, Børve A, Lê HS, Furu A, Cannon JT, Jondelius U, Hejnol A (2018) Convergent evolution of bilaterian nerve cords. Nat Publ Group 553:45–50

    Google Scholar 

  • Martinson AS, van Rossum DB, Diatta FH, Layden MJ, Rhodes SA, Martindale MQ, Jegla T (2014) Functional evolution of Erg potassium channel gating reveals an ancient origin for IKr. Proc Natl Acad Sci U S A 111:5712–5717

    Article  CAS  Google Scholar 

  • McDonald JA, Holbrook S, Isshiki T, Weiss J, Doe CQ, Mellerick DM (1998) Dorsoventral patterning in the Drosophila central nervous system: the vnd homeobox gene specifies ventral column identity. Genes Dev 12:3603–3612

    Article  CAS  Google Scholar 

  • Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K, Südhof TC (2003) α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 423:939–948

    Article  CAS  Google Scholar 

  • Moroz LL, Kohn AB (2015) Independent origins of neurons and synapses: insights from ctenophores. Philos Trans R Soc B Biol Sci 371:20150041–20150014

    Article  Google Scholar 

  • Park T-YS, Kihm J-H, Woo J, Park C, Lee WY, Smith MP, Harper DA, Young F, Nielsen AT, Vinther J (2018) Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head. Nat Commun 9:1019

    Article  Google Scholar 

  • Perea-Atienza E, Gavilan B, Chiodin M, Abril JF, Hoff KJ, Poustka AJ, Martinez P (2015) The nervous system of Xenacoelomorpha: a genomic perspective. J Exp Biol 218:618–628

    Article  Google Scholar 

  • Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598

    Article  CAS  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  CAS  Google Scholar 

  • Reichert H, Simeone A (2001) Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philos Trans R Soc B Biol Sci 356:1533–1544

    Article  CAS  Google Scholar 

  • Rentzsch F, Layden M, Manuel M (2016) The cellular and molecular basis of cnidarian neurogenesis. WIREs Dev Biol 6:1–19

    Google Scholar 

  • Richards GS, Rentzsch F (2014) Transgenic analysis of a SoxB gene reveals neural progenitor cells in the cnidarian Nematostella vectensis. Development 141:4681–4689

    Article  CAS  Google Scholar 

  • Ryan JF (2014) Did the ctenophore nervous system evolve independently? Zoology 117:225–226

    Article  Google Scholar 

  • Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, Koch BJ, Francis WR, Havlak P, NISC Comparative Sequencing Program et al (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 342:1242592

    Article  Google Scholar 

  • Saina M, Genikhovich G, Renfer E, Technau U (2009) BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci U S A 106:18592–18597

    Article  CAS  Google Scholar 

  • Schnitzler CE, Simmons DK, Pang K, Martindale MQ, Baxevanis AD (2014) Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation. EvoDevo 5:1–17

    Article  Google Scholar 

  • Simion P, Philippe H, Baurain D, Jager M, Richter DJ, Di Franco A, Roure B, Satoh N, Quéinnec E, Ereskovsky A et al (2017) A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr Biol 27:958–967

    Article  CAS  Google Scholar 

  • Simmons DK, Pang K, Martindale MQ (2012) Lim homeobox genes in the ctenophore Mnemiopsis leidyi: the evolution of neural cell. EvoDevo 3:1–11

    Article  Google Scholar 

  • Sinigaglia C, Busengdal H, Leclère L, Technau U, Rentzsch F (2013) The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 11:e1001488

    Article  CAS  Google Scholar 

  • Skeath JB (1999) At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. Bioessays 21:922–931

    Article  CAS  Google Scholar 

  • Srivastava M, Mazza-Curll KL, van Wolfswinkel JC, Reddien PW (2014) Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr Biol 24:1107–1113

    Article  CAS  Google Scholar 

  • Steinmetz PR, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, Guy K, Akam M, Bucher G, Arendt D (2010) Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 1:14

    Article  Google Scholar 

  • Takahashi H, Kamiya A, Ishiguro A, Suzuki AC, Saitou N, Toyoda A, Aruga J (2007) Conservation and diversification of Msx protein in metazoan evolution. Mol Biol Evol 25:69–82

    Article  Google Scholar 

  • Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, Zhang W, Südhof TC, Brose N (2006) Neuroligins determine synapse maturation and function. Neuron 51:741–754

    Article  CAS  Google Scholar 

  • Von Ohlen T, Doe CQ (2000) Convergence of dorsal, Dpp, and Egfr signaling pathways subdivides the Drosophila neuroectoderm into three dorsal-ventral columns. Dev Biol 224:362–372

    Article  Google Scholar 

  • Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Layden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Layden, M.J. (2019). Origin and Evolution of Nervous Systems. In: Martín-Durán, J., Vellutini, B. (eds) Old Questions and Young Approaches to Animal Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-18202-1_8

Download citation

Publish with us

Policies and ethics