Skip to main content

How Do Morphological Novelties Evolve? Novel Approaches to Define Novel Morphologies

  • Chapter
  • First Online:
Old Questions and Young Approaches to Animal Evolution

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Evolutionary innovations are biological revolutions: new organs are critically associated with the emergence of new species and their exploitation of new niches. Despite their importance in the history of life, how a morphological novelty arises and evolves is a long-standing question in evolutionary biology. By combining evolutionary theories with comparative developmental embryology, the emergence of the evo-devo discipline at the end of the twentieth century revived the interest in these questions. Mostly, a lack of appropriate techniques for non-model organisms precluded further advancements, and it is only now that novel DNA sequencing and genome editing techniques allow us to ask these long-standing questions in the organisms that may best serve to answer them. These new approaches have revealed the need of a new conceptual framework to define and classify morphological novelties in animal evolution. Thus, in this review, we will first revisit some of the most influential definitions of morphological novelty that have been coined over the last half century to further propose the use of the generative events that originated a new structure as the criterion to consider this new organ a morphological novelty or not. These generative events or phenomenological modes are divided into four different categories: (1) fusion of existing structures, (2) heterotopic activation of a gene regulatory network, (3) recruitment of additional cell types (either pre-existing or novel) into structures and (4) processes of symbiogenesis. We will finally revisit how recent studies have shed light into the mechanisms underpinning the evolutionary origin of some of the most classical morphological novelties.

Both the authors are co-corresponding authors and contributed equally to this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anbutsu H, Moriyama M, Nikoh N, Hosokawa T, Futahashi R, Tanahashi M, Meng XY, Kuriwada T, Mori N, Oshima K, Hattori M, Fujie M, Satoh N, Maeda T, Shigenobu S, Koga R, Fukatsu T (2017) Small genome Symbiont underlies cuticle hardness in beetles. Proc Natl Acad Sci U S A 114(40):E8382–E8391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelini DR, Kaufman TC (2004) Functional analyses in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects. Dev Biol 271(2):306–321

    Article  CAS  PubMed  Google Scholar 

  • Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C, Erwin DH, Pavlicev M, Schlosser G, Widder S, Laubichler MD, Wagner GP (2016) The origin and evolution of cell types. Nat Rev Genet 17(12):744–757

    Article  CAS  PubMed  Google Scholar 

  • Arthur W (2000) Intraspecific variation in developmental characters: the origin of evolutionary novelties. Am Zool 40(5):811–818

    Google Scholar 

  • Averof M, Cohen SM (1997) Evolutionary origin of insect wings from ancestral gills. Nature 385(6617):627–630

    Article  CAS  PubMed  Google Scholar 

  • Babonis LS, Martindale MQ (2014) Old cell, new trick? Cnidocytes as a model for the evolution of novelty. Integr Comp Biol 54(4):714–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babonis LS, Martindale MQ, Ryan JF (2016) Do novel genes drive morphological novelty? An investigation of the nematosomes in the sea anemone Nematostella vectensis. BMC Evol Biol 16(1):114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balfour FM (1881) On the development of the skeleton of the paired fins of Elasmobranchii, considered in relation to its bearings on the nature of the limbs of the vertebrata. Proc Zool Soc London 49(3):656–670

    Article  Google Scholar 

  • Batra LR (1966) Ambrosia fungi: extent of specificity to ambrosia beetles. Science 153(3732):193–195

    Article  CAS  PubMed  Google Scholar 

  • Bradley TJ, Briscoe AD, Brady SG, Contreras HL, Danforth BN, Dudley R, Grimaldi D, Harrison JF, Kaiser JA, Merlin C, Reppert SM, Vandenbrooks JM, Yanoviak SP (2009) Episodes in insect evolution. Integr Comp Biol 49(5):590–606

    Article  CAS  PubMed  Google Scholar 

  • Brigandt I, Love AC (2010) Evolutionary novelty and the evo-devo synthesis: field notes. Evol Biol 37(2):93–99

    Article  Google Scholar 

  • Brito JM, Teillet MA, Le Douarin NM (2008) Induction of mirror-image supernumerary jaws in chicken mandibular mesenchyme by sonic hedgehog-producing cells. Development 135(13):2311–2319

    Article  CAS  PubMed  Google Scholar 

  • Bruce H, Patel N (2018) Insect wings and body wall evolved from ancient leg segments. bioRxiv 244541. https://doi.org/10.1101/244541

  • Burke A (1989) Development of the turtle carapace: implications for the evolution of a novel Bauplan. J Morphol 199:363–378

    Article  PubMed  Google Scholar 

  • Carroll SB, Gates J, Keys DN, Paddock SW, Panganiban GE, Selegue JE, Williams JA (1994) Pattern formation and eyespot determination in butterfly wings. Science 265(5168):109

    Article  CAS  PubMed  Google Scholar 

  • Cebra-Thomas J, Tan F, Sistla S, Estes E, Bender G, Kim C, Riccio P, Gilbert SF (2005) How the turtle forms its shell: a paracrine hypothesis of carapace formation. J Exp Zool B Mol Dev Evol 304(6):558–569

    Article  PubMed  CAS  Google Scholar 

  • Cerny R, Cattell M, Sauka-Spengler T, Bronner-Fraser M, Yu F, Medeiros DM (2010) Evidence for the prepattern/cooption model of vertebrate jaw evolution. Proc Natl Acad Sci U S A 107(40):17262–17267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark-Hachtel CM, Tomoyasu Y (2016) Exploring the origin of insect wings from an evo-devo perspective. Curr Opin Insect Sci 13:77–85

    Article  PubMed  Google Scholar 

  • Clark-Hachtel C, Tomoyasu Y (2018) Two sets of wing homologs in the crustacean, Parhyale hawaiensis. bioRxiv 236281. https://doi.org/10.1101/236281

  • Clark-Hachtel CM, Linz DM, Tomoyasu Y (2013) Insights into insect wing origin provided by functional analysis of vestigial in the red flour beetle, Tribolium castaneum. Proc Natl Acad Sci U S A 110(42):16951–16956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahn RD, Davis MC, Pappano WN, Shubin NH (2007) Sonic hedgehog function in Chondrichthyan fins and the evolution of appendage patterning. Nature 445(7125):311–314

    Article  CAS  PubMed  Google Scholar 

  • Dale C (2017) Evolution: weevils get tough on symbiotic tyrosine. Curr Biol 27(23):R1282–R1284

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • Depew MJ, Compagnucci C (2008) Tweaking the hinge and caps: testing a model of the organization of jaws. J Exp Zool B Mol Dev Evol 310(4):315–335

    Article  PubMed  Google Scholar 

  • Depew MJ, Lufkin T, Rubenstein JL (2002) Specification of jaw subdivisions by Dlx genes. Science 298(5592):381–385

    Article  CAS  PubMed  Google Scholar 

  • Elias-Neto M, Belles X (2016) Tergal and pleural structures contribute to the formation of ectopic prothoracic wings in cockroaches. R Soc Open Sci 3(8):160347

    Article  PubMed  PubMed Central  Google Scholar 

  • Emlen DJ (1997) Alternative reproductive tactics and male-dimorphism in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Behav Ecol Sociobiol 41(5):335–341

    Article  Google Scholar 

  • Erwin DH (2015) Novelty and innovation in the history of life. Curr Biol 25(19):R930–R940

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9(5):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filant J, Spencer TE (2014) Uterine glands: biological roles in conceptus implantation, uterine receptivity and decidualization. Int J Dev Biol 58(2–4):107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fish JL (2017) Evolvability of the vertebrate craniofacial skeleton. Semin Cell Dev Biol 17:30284–30287

    Google Scholar 

  • Freitas R, Zhang G, Cohn MJ (2006) Evidence that mechanisms of fin development evolved in the midline of early vertebrates. Nature 442(7106):1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Freitas R, Gómez-Skarmeta JL, Rodrigues PN (2014) New frontiers in the evolution of fin development. J Exp Zool B Mol Dev Evol 322(7):540–552

    Article  PubMed  Google Scholar 

  • Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science 220(4594):268–273

    Article  CAS  PubMed  Google Scholar 

  • Gegenbaur C (1876) Zur Morphologie der Gliedmassen der Wirbeltiere. Morphologisches Jahrbuch 2:396–420

    Google Scholar 

  • Green SA, Simoes-Costa M, Bronner ME (2015) Evolution of vertebrates as viewed from the crest. Nature 520(7548):474–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grillo M, Casanova J, Averof M (2014) Development: a deep breath for endocrine organ evolution. Curr Biol 24(1):R38–R40

    Article  CAS  PubMed  Google Scholar 

  • Hallgrímsson B, Jamniczky HA, Young NM, Rolian C, Schmidt-Ott U, Marcucio RS (2012) The generation of variation and the developmental basis for evolutionary novelty. J Exp Zool B Mol Dev Evol 318(6):501–517

    Article  PubMed  PubMed Central  Google Scholar 

  • Happ GM, Happ CM, Barras SJ (1971) Fine structure of the prothoracic mycangium, a chamber for the culture of symbiotic fungi, in the southern pine beetle, Dendroctonus frontalis. Tissue Cell 3(2):295–308

    Article  CAS  PubMed  Google Scholar 

  • Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190(3):555–570

    Article  CAS  PubMed  Google Scholar 

  • Held LI (2013) Rethinking butterfly eyespots. Evol Biol 40(1):158–168

    Article  Google Scholar 

  • Hirasawa T, Pascual-Anaya J, Kamezaki N, Taniguchi M, Mine K, Kuratani S (2015) The evolutionary origin of the turtle shell and its dependence on the axial arrest of the embryonic rib cage. J Exp Zool B Mol Dev Evol 324(3):194–207

    Article  PubMed  Google Scholar 

  • Hulcr J, Stelinski LL (2017) The Ambrosia Symbiosis: from evolutionary ecology to practical management. Annu Rev Entomol 62:285–303

    Article  CAS  PubMed  Google Scholar 

  • Hulcr J, Rountree NR, Diamond SE, Stelinski LL, Fierer N, Dunn RR (2012) Mycangia of ambrosia beetles host communities of bacteria. Microb Ecol 64(3):784–793

    Article  CAS  PubMed  Google Scholar 

  • Hunt P, Whiting J, Nonchev S, Sham MH, Marshall H, Graham A, Cook M, Allemann R, Rigby PWJ, Gulisano M, Faiella A, Boncinelli E, Krumlauf R (1991) The branchial Hox code and its implications for gene regulation, patterning of the nervous system and head evolution. Development 2:63–77

    Google Scholar 

  • Kent D, Simpson J (1992) Eusociality in the beetle Austroplatypus incompertus (Coleoptera, Curculionidae). Naturwissenschaften 79:86–87

    Article  Google Scholar 

  • Keys DN, Lewis DL, Selegue JE, Pearson BJ, Goodrich LV, Johnson RL, Gates J, Scott MP, Carroll SB (1999) Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283(5401):532

    Article  CAS  PubMed  Google Scholar 

  • Kijimoto T, Pespeni M, Beckers O, Moczek AP (2013) Beetle horns and horned beetles: emerging models in developmental evolution and ecology. Wiley Interdiscip Rev Dev Biol 2(3):405–418

    Article  CAS  PubMed  Google Scholar 

  • Kukalová-Peck J (1983) Origin of the insect wing and wing articulation from the arthropodan leg. Can J Zool 61(7):1618–1669

    Article  Google Scholar 

  • Kuraku S, Usuda R, Kuratani S (2005) Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evol Dev 7(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Kuraku S, Takio Y, Sugahara F, Takechi M, Kuratani S (2010) Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates. Dev Biol 341(1):315–323

    Article  CAS  PubMed  Google Scholar 

  • Kuratani S, Kuraku S, Nagashima H (2011) Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evol Dev 13(1):1–14

    Article  PubMed  Google Scholar 

  • Kuratani S, Adachi N, Wada N, Oisi Y, Sugahara F (2013) Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. J Anat 222(1):41–55

    Article  PubMed  Google Scholar 

  • Kuriwada T, Hosokawa T, Kumano N, Shiromoto K, Haraguchi D, Fukatsu T (2010) Biological role of Nardonella endosymbiont in its weevil host. PLoS One 5(10):e13101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Letelier J, de la Calle-Mustienes E, Pieretti J, Naranjo S, Maeso I, Nakamura T, Pascual-Anaya J, Shubin NH, Schneider I, Martinez-Morales JR, Gómez-Skarmeta JL (2018) A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins. Nat Genet 50(4):504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linz DM, Tomoyasu Y (2018) Dual evolutionary origin of insect wings supported by an investigation of the abdominal wing serial homologs in Tribolium. Proc Natl Acad Sci U S A 115(4):E658–E667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukasik P, Nazario K, Van Leuven JT, Campbell MA, Meyer M, Michalik A, Pessacq P, Simon C, Veloso C, McCutcheon JP (2018) Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas. Proc Natl Acad Sci U S A 115(2):E226–E235

    Article  CAS  PubMed  Google Scholar 

  • Lynch VJ, Roth JJ, Takahashi K, Dunn CW, Nonaka DF, Stopper GF, Wagner GP (2004) Adaptive evolution of HoxA-11 and HoxA-13 at the origin of the uterus in mammals. Proc Biol Sci 271(1554):2201–2207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch VJ, Tanzer A, Wang Y, Leung FC, Gellersen B, Emera D, Wagner GP (2008) Adaptive changes in the transcription factor HoxA-11 are essential for the evolution of pregnancy in mammals. Proc Natl Acad Sci U S A 105(39):14928–14933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43(11):1154–1159

    Article  CAS  PubMed  Google Scholar 

  • Lynch VJ, Nnamani MC, Kapusta A, Brayer K, Plaza SL, Mazur EC, Emera D, Sheikh SZ, Grutzner F, Bauersachs S, Graf A, Young SL, Lieb JD, DeMayo FJ, Feschotte C, Wagner GP (2015) Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep 10(4):551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mashimo Y, Machida R (2017) Embryological evidence substantiates the subcoxal theory on the origin of pleuron in insects. Sci Rep 7(1):12597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayr E (1960) The emergence of evolutionary novelties. In: Tax S (ed) Evolution after Darwin, vol 1. Harvard University Press, Cambridge, MA, pp 349–380

    Google Scholar 

  • Mayr E (1982) The growth of biological thought: diversity, evolution, and inheritance. Belknap Press, Cambridge, MA

    Google Scholar 

  • Medved V, Marden JH, Fescemyer HW, Der JP, Liu J, Mahfooz N, Popadić A (2015) Origin and diversification of wings: insights from a neopteran insect. Proc Natl Acad Sci 112(52):15946–15951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4(4):e115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller CT, Yelon D, Stainier DY, Kimmel CB (2003) Two endothelin 1 effectors, hand2 and bapx1, pattern ventral pharyngeal cartilage and the jaw joint. Development 130(7):1353–1365

    Article  CAS  PubMed  Google Scholar 

  • Mivart SG (1879) XII. Notes on the fins of elasmobranchs, with considerations on the nature and homologues of vertebrate limbs. Trans Zool Soc London 10(10):439–484

    Article  Google Scholar 

  • Moczek AP (2008) On the origins of novelty in development and evolution. BioEssays 30(5):432–447

    Article  PubMed  Google Scholar 

  • Moczek AP (2009) On the origins of novelty and diversity in development and evolution: a case study on beetle horns. Cold Spring Harb Symp Quant Biol 74:289–296

    Article  CAS  PubMed  Google Scholar 

  • Moczek AP, Rose DJ (2009) Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc Natl Acad Sci 106(22):8992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro A (2015) Origin, development, and evolution of butterfly eyespots. Annu Rev Entomol 60:253–271

    Article  CAS  PubMed  Google Scholar 

  • Müller GB (2010) Epigenetic innovation. In: Müller GB, Newman SA (eds) Evolution—the extended synthesis. MIT Press, Cambridge, MA, pp 51–69

    Google Scholar 

  • Müller GB, Newman SA (2005) The innovation triad: an EvoDevo agenda. J Exp Zool B Mol Dev Evol 304(6):487–503

    Article  PubMed  Google Scholar 

  • Müller GB, Wagner GP (1991) Novelty in evolution: restructuring the concept. Annu Rev Ecol Syst 22(1):229–256

    Article  Google Scholar 

  • Nagashima H, Kuraku S, Uchida K, Ohya YK, Narita Y, Kuratani S (2007) On the carapacial ridge in turtle embryos: its developmental origin, function and the chelonian body plan. Development 134(12):2219–2226

    Article  CAS  PubMed  Google Scholar 

  • Nagashima H, Sugahara F, Takechi M, Ericsson R, Kawashima-Ohya Y, Narita Y, Kuratani S (2009) Evolution of the turtle body plan by the folding and creation of new muscle connections. Science 325(5937):193–196

    Article  CAS  PubMed  Google Scholar 

  • Newman SA, Müller GB (2001) Epigenetic mechanisms of character origination. In: Wagner GP (ed) The character concept in evolutionary biology. Academic Press, San Diego, pp 559–580

    Chapter  Google Scholar 

  • Nijhout HF (2001) Elements of butterfly wing patterns. J Exp Zool 291(3):213–225

    Article  CAS  PubMed  Google Scholar 

  • Niwa N, Akimoto-Kato A, Niimi T, Tojo K, Machida R, Hayashi S (2010) Evolutionary origin of the insect wing via integration of two developmental modules. Evol Dev 12(2):168–176

    Article  CAS  PubMed  Google Scholar 

  • Nunberg M (1951) Contribution to the knowledge of prothoracic glands of Scolytidae and Platypodidae (Coleoptera). Ann Mus Zool Pol 14:261–265

    Google Scholar 

  • Oliver JC, Tong XL, Gall LF, Piel WH, Monteiro A (2012) A single origin for Nymphalid butterfly eyespots followed by widespread loss of associated gene expression. PLoS Genet 8(8):e1002893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parzer HF, Moczek AP (2008) Rapid antagonistic coevolution between primary and secondary sexual characters in horned beetles. Evolution 62(9):2423–2428

    Article  PubMed  Google Scholar 

  • Pascual-Anaya J, Hirasawa T, Sato I, Kuraku S, Kuratani S (2014) Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge. Int J Dev Biol 58(10–12):743–750

    Article  CAS  PubMed  Google Scholar 

  • Peterson T, Müller GB (2013) What is evolutionary novelty? Process versus character based definitions. J Exp Zool B Mol Dev Evol 320(6):345–350

    Article  PubMed  Google Scholar 

  • Pieretti J, Gehrke AR, Schneider I, Adachi N, Nakamura T, Shubin NH (2015) Organogenesis in deep time: a problem in genomics, development, and paleontology. Proc Natl Acad Sci U S A 112(16):4871–4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pigliucci M (2008) What, if anything, is an evolutionary novelty? Philos Sci 75(5):887–898

    Article  Google Scholar 

  • PrabhuDas M, Bonney E, Caron K, Dey S, Erlebacher A, Fazleabas A, Fisher S, Golos T, Matzuk M, McCune JM, Mor G, Schulz L, Soares M, Spencer T, Strominger J, Way SS, Yoshinaga K (2015) Immune mechanisms at the maternal-fetal interface: perspectives and challenges. Nat Immunol 16(4):328–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prokop J, Pecharová M, Nel A, Hörnschemeyer T, Krzemińska E, Krzemiński W, Engel MS (2017) Paleozoic Nymphal wing pads support dual model of insect wing origins. Curr Biol 27(2):263–269

    Article  CAS  PubMed  Google Scholar 

  • Rasnitsyn AP (1981) A modified paranotal theory of insect wing origin. J Morphol 168:331–338

    Article  PubMed  Google Scholar 

  • Reeve HK, Sherman PW (1993) Adaptation and the goals of evolutionary research. Q Rev Biol 68(1):1–32

    Article  Google Scholar 

  • Rinke R, Costa AS, Fonseca FP, Almeida LC, Delalibera Junior I, Henrique-Silva F (2011) Microbial diversity in the larval gut of field and laboratory populations of the sugarcane weevil Sphenophorus levis (Coleoptera, Curculionidae). Genet Mol Res 10(4):2679–2691

    Article  CAS  PubMed  Google Scholar 

  • Ruckes H (1929) Studies in chelonian osteology, part II: the morphological relationships between the girdles, ribs and carapace. Ann N Y Acad Sci 31(1):81–120

    Article  Google Scholar 

  • Saenko SV, Brakefield PM, Beldade P (2010) Single locus affects embryonic segment polarity and multiple aspects of an adult evolutionary novelty. BMC Biol 8(1):111

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Higueras C, Hombria JC (2016) Precise long-range migration results from short-range stepwise migration during ring gland organogenesis. Dev Biol 414(1):45–57

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Higueras C, Sotillos S, Castelli-Gair Hombria J (2014) Common origin of insect trachea and endocrine organs from a segmentally repeated precursor. Curr Biol 24(1):76–81

    Article  CAS  PubMed  Google Scholar 

  • Sebé-Pedrós A, Saudemont B, Chomsky E, Plessier F, Mailhé M-P, Renno J, Loe-Mie Y, Lifshitz A, Mukamel Z, Schmutz S, Novault S, Steinmetz PRH, Spitz F, Tanay A, Marlow H (2018) Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-Seq. Cell 173(6):1520–1534

    Article  PubMed  CAS  Google Scholar 

  • Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, Abramyan J, Amemiya CT, Badenhorst D, Biggar KK, Borchert GM, Botka CW, Bowden RM, Braun EL, Bronikowski AM, Bruneau BG, Buck LT, Capel B, Castoe TA, Czerwinski M, Delehaunty KD, Edwards SV, Fronick CC, Fujita MK, Fulton L, Graves TA, Green RE, Haerty W, Hariharan R, Hernandez O, Hillier LW, Holloway AK, Janes D, Janzen FJ, Kandoth C, Kong L, de Koning AP, Li Y, Literman R, McGaugh SE, Mork L, O’Laughlin M, Paitz RT, Pollock DD, Ponting CP, Radhakrishnan S, Raney BJ, Richman JM, St John J, Schwartz T, Sethuraman A, Spinks PQ, Storey KB, Thane N, Vinar T, Zimmerman LM, Warren WC, Mardis ER, Wilson RK (2013) The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 14(3):R28

    Article  PubMed  CAS  Google Scholar 

  • Shigetani Y, Sugahara F, Kawakami Y, Murakami Y, Hirano S, Kuratani S (2002) Heterotopic shift of epithelial-mesenchymal interactions in vertebrate jaw evolution. Science 296(5571):1316–1319

    Article  CAS  PubMed  Google Scholar 

  • Shirai LT, Saenko SV, Keller RA, Jerónimo MA, Brakefield PM, Descimon H, Wahlberg N, Beldade P (2012) Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait. BMC Evol Biol 12:21–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Snell-Rood EC, Moczek AP (2012) Insulin signaling as a mechanism underlying developmental plasticity: the role of FOXO in a nutritional polyphenism. PLoS One 7(4):e34857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens M (2005) The role of eyespots as anti-predator mechanisms, principally demonstrated in the Lepidoptera. Biol Rev Camb Philos Soc 80(4):573–588

    Article  PubMed  Google Scholar 

  • Takio Y, Pasqualetti M, Kuraku S, Hirano S, Rijli FM, Kuratani S (2004) Evolutionary biology: lamprey Hox genes and the evolution of jaws. Nature 429(6989):1 following 262

    Article  CAS  Google Scholar 

  • Takio Y, Kuraku S, Murakami Y, Pasqualetti M, Rijli FM, Narita Y, Kuratani S, Kusakabe R (2007) Hox gene expression patterns in Lethenteron japonicum embryos—insights into the evolution of the vertebrate Hox code. Dev Biol 308(2):606–620

    Article  CAS  PubMed  Google Scholar 

  • Thacher JK (1877) Median and paired fins, a contribution to the history of the vertebrate limbs. Trans Connecticut Acad Arts Sci 3(36):281–310

    Google Scholar 

  • Tomoyasu Y, Ohde T, Clark-Hachtel C (2017) What serial homologs can tell us about the origin of insect wings. F1000Res 6:268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Leuven JT, Meister RC, Simon C, McCutcheon JP (2014) Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 158(6):1270–1280

    Article  PubMed  CAS  Google Scholar 

  • Vanderpool D, Bracewell RR, McCutcheon JP (2017) Know your farmer: ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Mol Ecol 27(8):2077–2094

    Article  PubMed  Google Scholar 

  • Wagner GP (2014) Homology, genes, and evolutionary innovation. Princeton University Press, Princeton

    Book  Google Scholar 

  • Wagner GP, Kin K, Muglia L, Pavličev M (2014) Evolution of mammalian pregnancy and the origin of the decidual stromal cell. Int J Dev Biol 58(2–4):117–126

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, Li C, White S, Xiong Z, Fang D, Wang B, Ming Y, Chen Y, Zheng Y, Kuraku S, Pignatelli M, Herrero J, Beal K, Nozawa M, Li Q, Wang J, Zhang H, Yu L, Shigenobu S, Wang J, Liu J, Flicek P, Searle S, Wang J, Kuratani S, Yin Y, Aken B, Zhang G, Irie N (2013) The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet 45(6):701–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitney HS, Farris SH (1970) Maxillary Mycangium in the mountain pine beetle. Science 167(3914):54

    Article  CAS  PubMed  Google Scholar 

  • Zattara EE, Busey HA, Linz DM, Tomoyasu Y, Moczek AP (2016) Neofunctionalization of embryonic head patterning genes facilitates the positioning of novel traits on the dorsal head of adult beetles. Proc Biol Sci 283(1834):20160824

    Article  PubMed  PubMed Central  Google Scholar 

  • Zelenitsky DK, Therrien F, Erickson GM, DeBuhr CL, Kobayashi Y, Eberth DA, Hadfield F (2012) Feathered non-avian dinosaurs from North America provide insight into wing origins. Science 338(6106):510–514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ignacio Maeso for fruitful discussions. We thank as well Naoki Irie for the drawing of the turtle skeleton and Nobu Tamura for giving us permission to modify and use his illustration of the placoderm Coccosteus cuspidatus.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Almudí, I., Pascual-Anaya, J. (2019). How Do Morphological Novelties Evolve? Novel Approaches to Define Novel Morphologies. In: Martín-Durán, J., Vellutini, B. (eds) Old Questions and Young Approaches to Animal Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-18202-1_6

Download citation

Publish with us

Policies and ethics