Skip to main content

How Do Gene Networks Promote Morphological Evolution

  • Chapter
  • First Online:
  • 1017 Accesses

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

The shape of animals is established during their embryonic development. As a consequence, understanding which mechanisms drive embryogenesis is crucial for understanding the evolution of morphologies. The last 30 years has shown that gene expression has a major role in regulating embryonic development. More recently, the way these genes and their regulators interact has been conceptualized as gene regulatory networks or GRNs that thus describe the underlying logic that drives development. However, until recently, the lack of tools available for non-model organisms has limited the understanding of their evolution. Thanks to the new discoveries and new techniques that have arisen in the last 10 years, studying and manipulating GRNs in depth is now possible in model and non-model organisms, expanding our resources to understand morphological evolution. In this chapter, we review current knowledge about how the evolution of GRNs can generate variation. We focus on the recent advances in techniques that allow the study of GRNs in different organisms. These discoveries are crucial not only to understand how species evolve and get their shape but also to understand how defects in the developmental program could lead to morphological defects in humans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    References with an asterisk at end are major references.

References

References with an asterisk at end are major references.

  • Angelini C, Costa V (2014) Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems. Front Cell Dev Biol 2:51. https://doi.org/10.3389/fcell.2014.00051

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnoult L et al (2013) Emergence and diversification of fly pigmentation through evolution of a gene regulatory module. Science 339(6126):1423–1426

    Article  CAS  PubMed  Google Scholar 

  • Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34(9):933–941

    Article  CAS  PubMed  Google Scholar 

  • Belvin MP, Anderson KV (1996) A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol 12:393–416

    Article  CAS  PubMed  Google Scholar 

  • Booker BM et al (2016) Bat accelerated regions identify a bat forelimb specific enhancer in the HoxD locus. PLoS Genet 12(3):e1005738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell G, Weaver T, Tomlinson A (1993) Axis specification in the developing Drosophila appendage: the role of wingless, decapentaplegic, and the homeobox gene aristaless. Cell 74(6):1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB (2008) Evo-Devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134(1):25–36*

    Article  CAS  PubMed  Google Scholar 

  • Cheatle Jarvela AM, Hinman VF (2015) Evolution of transcription factor function as a mechanism for changing metazoan developmental gene regulatory networks. EvoDevo 6(1):3. https://doi.org/10.1186/2041-9139-6-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheatle Jarvela AM et al (2014) Modular evolution of DNA-binding preference of a Tbrain transcription factor provides a mechanism for modifying gene regulatory networks. Mol Biol Evol 31(10):2672–2688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Wang G, Zhu Y-N, Xiang H, Wang W (2016) Advances and perspectives in the application of CRISPR/Cas9 in insects. Dongwuxue Yanjiu 37(4):136–143

    PubMed Central  Google Scholar 

  • Cummings FW (1990) A model of morphogenetic pattern formation. J Theor Biol 144(4):547–566

    Article  CAS  PubMed  Google Scholar 

  • Davidson E (2001) Genomic regulatory systems: development and evolution. Academic, San Diego

    Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311(5762):796–800

    Article  CAS  PubMed  Google Scholar 

  • Davidson LA, Koehl MA, Keller R, Oster GF (1995) How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination. Development 121(7):2005–2018

    CAS  PubMed  Google Scholar 

  • Davidson G et al (2009) Cell cycle control of Wnt receptor activation. Dev Cell 17(6):788–799. https://doi.org/10.1016/j.devcel.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  • Duboule D, Dolle P (1989) The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 8(5):1497–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emlen DJ, Warren IA, Johns A, Dworkin I, Lavine L (2012) A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science (New York) 337(6096):860–864

    Article  CAS  Google Scholar 

  • Erwin DH, Davidson EH (2009) The evolution of hierarchical gene regulatory networks. Nat Rev Genet 10(2):141–148

    Article  CAS  PubMed  Google Scholar 

  • Frankel N et al (2011) Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. Nature 474(7353):598–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankel N, Wang S, Stern DL (2012) Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution. Proc Natl Acad Sci USA 109(51):20975–20979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto A et al (2007) A scan for genetic determinants of human hair morphology: EDAR is associated with Asian hair thickness. Hum Mol Genet 17(6):835–843

    Article  PubMed  CAS  Google Scholar 

  • Garrett-Engele CM et al (2002) Intersex, a gene required for female sexual development in Drosophila, is expressed in both sexes and functions together with doublesex to regulate terminal differentiation. Development 129(20):4661–4675

    CAS  PubMed  Google Scholar 

  • Gempe T (2010) Function and evolution of sex determination mechanisms, genes and pathways in insects. BioEssays. Wiley Online Library. http://onlinelibrary.wiley.com/doi/10.1002/bies.201000043/abstract. Accessed 8 Feb 2018

  • Geyer PK, Corces VG (1987) Separate regulatory elements are responsible for the complex pattern of tissue-specific and developmental transcription of the yellow locus in Drosophila melanogaster. Genes Dev 1(9):996–1004

    Article  CAS  PubMed  Google Scholar 

  • Gompel N, Prud’homme B, Wittkopp PJ, Kassner VA, Carroll SB (2005) Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433(7025):481–487

    Article  CAS  PubMed  Google Scholar 

  • Haeckel E (1886) Generelle Morphologie der Organismen. Reimer, Berlin

    Google Scholar 

  • Harding K, Hoey T, Warrior R, Levine M (1989) Autoregulatory and gap gene response elements of the even-skipped promoter of Drosophila. EMBO J 8(4):1205–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardison RC, Taylor J (2012) Genomic approaches towards finding cis-regulatory modules in animals. Nat Rev Genet 13(7):469–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harjunmaa E et al (2014) Replaying evolutionary transitions from the dental fossil record. Nature 512(7512):44–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentschel HG, Glimm T, Glazier JA, Newman SA (2004) Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. Proc Biol Sci 271(1549):1713–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekstra HE, Coyne JA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61(5):995–1016

    Article  PubMed  Google Scholar 

  • Isaac S-C (2008) Tooth morphogenesis in vivo, in vitro, and in silico. Curr Top Dev Biol 81:341–371

    Article  Google Scholar 

  • Jeong S, Rokas A, Carroll SB (2006) Regulation of body pigmentation by the abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell 125(7):1387–1399

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Kosman D, Ip YT, Levine M (1991) The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev 5(10):1881–1891

    Article  CAS  PubMed  Google Scholar 

  • Kalinka AT et al (2010) Gene expression divergence recapitulates the developmental hourglass model. Nature 468(7325):811–814

    Article  CAS  PubMed  Google Scholar 

  • Kawashima T et al (2009) Domain shuffling and the evolution of vertebrates. Genome Res 19(8):1393–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kijimoto T, Moczek AP, Andrews J (2012) Diversification of doublesex function underlies morph-, sex-, and species-specific development of beetle horns. PNAS 109(50):20526–20531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima T (2004) The mechanism of Drosophila leg development along the proximodistal axis. Dev Growth Differ 46(2):115–129

    Article  CAS  PubMed  Google Scholar 

  • Kopp A (2012) Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet 28(4):175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Tan Y, Cahan P (2017) Understanding development and stem cells using single cell-based analyses of gene expression. Development 144(1):17–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledón-Rettig CC, Zattara EE, Moczek AP (2017) Asymmetric interactions between doublesex and tissue- and sex-specific target genes mediate sexual dimorphism in beetles. Nat Commun 8:14593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levin M et al (2016) The mid-developmental transition and the evolution of animal body plans. Nature 531(7596):637–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine M, Davidson EH (2005) Gene regulatory networks for development. Proc Natl Acad Sci USA 102(14):4936–4942*

    Article  CAS  Google Scholar 

  • Lynch VJ, Wagner GP (2008) Resurrecting the role of transcription factor change in developmental evolution. Evolution 62(9):2131–2154

    Article  CAS  PubMed  Google Scholar 

  • Maeso I, Irimia M, Tena JJ, Casares F, Gómez-Skarmeta JL (2013) Deep conservation of cis-regulatory elements in metazoans. Philos Trans R Soc B 368(1632):20130020

    Article  CAS  Google Scholar 

  • Malicki J, Schughart K, McGinnis W (1990) Mouse Hox-2.2 specifies thoracic segmental identity in Drosophila embryos and larvae. Cell 63(5):961–967

    Article  CAS  PubMed  Google Scholar 

  • Marin-Riera M, Brun-Usan M, Zimm R, Välikangas T, Salazar-Ciudad I (2016) Computational modeling of development by epithelia, mesenchyme and their interactions: a unified model. Bioinformatics 32(2):219–225

    CAS  PubMed  Google Scholar 

  • Martin A et al (2016) CRISPR/Cas9 mutagenesis reveals versatile roles of Hox genes in crustacean limb specification and evolution. Curr Biol 26(1):14–26

    Article  CAS  PubMed  Google Scholar 

  • Mathelier A, Shi W, Wasserman WW (2015) Identification of altered cis-regulatory elements in human disease. Trends Genet 31(2):67–76

    Article  CAS  PubMed  Google Scholar 

  • McGinnis W, Garber RL, Wirz J, Kuroiwa A, Gehring WJ (1984a) A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37(2):403–408

    Article  CAS  PubMed  Google Scholar 

  • McGinnis W, Levine MS, Hafen E, Kuroiwa A, Gehring WJ (1984b) A conserved DNA sequence in homoeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308(5958):428–433

    Article  CAS  PubMed  Google Scholar 

  • McGinnis W, Hart CP, Gehring WJ, Ruddle FH (1984c) Molecular cloning and chromosome mapping of a mouse DNA sequence homologous to homeotic genes of Drosophila. Cell 38(3):675–680

    Article  CAS  PubMed  Google Scholar 

  • Meader S, Ponting CP, Lunter G (2010) Massive turnover of functional sequence in human and other mammalian genomes. Genome Res 20(10):1335–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moczek AP (2006a) Pupal remodeling and the development and evolution of sexual dimorphism in horned beetles. Am Nat 168(6):711–729

    Article  PubMed  Google Scholar 

  • Moczek AP (2006b) Integrating micro- and macroevolution of development through the study of horned beetles. Heredity 97(3):168–178

    Article  CAS  PubMed  Google Scholar 

  • Moczek AP, Emlen DJ (2000) Male horn dimorphism in the scarab beetle, Onthophagus taurus: do alternative reproductive tactics favour alternative phenotypes? Anim Behav 59(2):459–466

    Article  CAS  PubMed  Google Scholar 

  • Moczek AP, Rose DJ (2009) Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc Natl Acad Sci USA 106(22):8992–8997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moczek AP et al (2015) The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol Dev 17(3):198–219

    Article  PubMed  Google Scholar 

  • Moustakas-Verho JE et al (2014) The origin and loss of periodic patterning in the turtle shell. Development 141(15):3033–3039

    Article  CAS  PubMed  Google Scholar 

  • Ordway AJ, Hancuch KN, Johnson W, Wiliams TM, Rebeiz M (2014) The expansion of body coloration involves coordinated evolution in cis and trans within the pigmentation regulatory network of Drosophila prostipennis. Dev Biol 392(2):431–440

    Article  CAS  PubMed  Google Scholar 

  • Pan DJ, Huang JD, Courey AJ (1991) Functional analysis of the Drosophila twist promoter reveals a dorsal-binding ventral activator region. Genes Dev 5(10):1892–1901

    Article  CAS  PubMed  Google Scholar 

  • Peri F, Technau M, Roth S (2002) Mechanisms of Gurken-dependent pipe regulation and the robustness of dorsoventral patterning in Drosophila. Development 129(12):2965–2975

    CAS  PubMed  Google Scholar 

  • Piasecka B, Lichocki P, Moretti S, Bergmann S, Robinson-Rechavi M (2013) The hourglass and the early conservation models—co-existing patterns of developmental constraints in vertebrates. PLoS Genet 9(4):e1003476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pires-daSilva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Rebeiz M, Patel NH, Hinman VF (2015) Unraveling the tangled skein: the evolution of transcriptional regulatory networks in development. Annu Rev Genomics Hum Genet 16:103–131*

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadier A (2016) Roles of regulatory and coding changes in developmental evolution. Encyclopedia of evolutionary biology. Elsevier

    Google Scholar 

  • Sadier A et al (2015) Tinkering signaling pathways by gain and loss of protein isoforms: the case of the EDA pathway regulator EDARADD. BMC Evol Biol 15(1):129. https://doi.org/10.1186/s12862-015-0395-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar-Ciudad I (2012) Tooth patterning and evolution. Curr Opin Genet Dev 22(6):585–592

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2010) A computational model of teeth and the developmental origins of morphological variation. Nature 464(7288):583–586

    Article  CAS  PubMed  Google Scholar 

  • Schmidt D et al (2010) Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328(5981):1036–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears KE et al (2015) The relationship between gene network structure and expression variation among individuals and species. PLoS Genet 11(8):e1005398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14(9):618–630

    Article  CAS  PubMed  Google Scholar 

  • Small S, Blair A, Levine M (1992) Regulation of even-skipped stripe 2 in the Drosophila embryo. EMBO J 11(11):4047–4057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava M et al (2010) Early evolution of the LIM homeobox gene family. BMC Biol 8:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stathopoulos A, Tam B, Ronshaugen M, Frasch M, Levine M (2004) Pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos. Genes Dev 18(6):687–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein DS, Stevens LM (2014) Maternal control of the Drosophila dorsal-ventral body axis. Wiley Interdiscip Rev Dev Biol 3(5):301–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thisse B, Stoetzel C, Gorostiza-Thisse C, Perrin-Schmitt F (1988) Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J 7(7):2175–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thisse C, Perrin-Schmitt F, Stoetzel C, Thisse B (1991) Sequence-specific transactivation of the Drosophila twist gene by the dorsal gene product. Cell 65(7):1191–1201

    Article  CAS  PubMed  Google Scholar 

  • Valentine JW, Jablonski D (2002) Morphological and developmental macroevolution: a paleontological perspective. Int J Dev Biol 47(7–8):517–522

    Google Scholar 

  • VanderMeer JE, Smith RP, Jones SL, Ahituv N (2014) Genome-wide identification of signaling center enhancers in the developing limb. Development. 141(21):4194–4198. http://dev.biologists.org/content/141/21/4194. Accessed 20 Feb 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner GP, Lynch VJ (2008) The gene regulatory logic of transcription factor evolution. Trends Ecol Evol 23(7):377–385

    Article  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams TM et al (2008) The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134(4):610–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittkopp PJ, Williams BL, Selegue JE, Carroll SB (2003a) Drosophila pigmentation evolution: divergent genotypes underlying convergent phenotypes. Proc Natl Acad Sci USA 100(4):1808–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittkopp PJ, Carroll SB, Kopp A (2003b) Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet 19(9):495–504

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Reed RD (2016) Genome editing in butterflies reveals that spalt promotes and distal-less represses eyespot colour patterns. Nat Commun 7:11769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinna RA, Gotoh H, Kojima T, Niimi T (2018) Recent advances in understanding the mechanisms of sexually dimorphic plasticity: insights from beetle weapons and future directions. Curr Opin Insect Sci 25:35–41

    Article  PubMed  Google Scholar 

  • Zuniga A (2015) Next generation limb development and evolution: old questions, new perspectives. Development 142(22):3810–3820

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexa Sadier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadier, A. (2019). How Do Gene Networks Promote Morphological Evolution. In: Martín-Durán, J., Vellutini, B. (eds) Old Questions and Young Approaches to Animal Evolution. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-18202-1_10

Download citation

Publish with us

Policies and ethics