Skip to main content

New Polynomial-Time Algorithm Around the Scaffolding Problem

  • Conference paper
  • First Online:
  • 463 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11488))

Abstract

We describe in this paper an approximation algorithm for the scaffolding problem, which is part of genome inference in bioinformatics. The aim of the problem is to find a maximum weighted collection of disjoint alternating cycles and paths covering a particular graph called scaffold graph. The problem is known to be NP-complete, and we describe further result concerning a special class of graphs aiming to be close to real instances. The described algorithm is the first polynomial-time approximation algorithm designed for this problem on non-complete graphs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use here “alternating” in an abusive manner, meaning alternating matching edges and non-matching edges, beginning and ending with non-matching edges.

References

  1. Chateau, A., Giroudeau, R.: Complexity and polynomial-time approximation algorithms around the scaffolding problem. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) AlCoB 2014. LNCS, vol. 8542, pp. 47–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07953-0_4

    Chapter  Google Scholar 

  2. Chateau, A., Giroudeau, R.: A complexity and approximation framework for the maximization scaffolding problem. Theor. Comput. Sci. 595, 92–106 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chen, Z., Harada, Y., Machida, E., Guo, F., Wang, L.: Better approximation algorithms for scaffolding problems. In: Zhu, D., Bereg, S. (eds.) FAW 2016. LNCS, pp. 17–28. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39817-4_3

    Chapter  Google Scholar 

  4. Dallard, C., Weller, M., Chateau, A., Giroudeau, R.: Instance guaranteed ratio on greedy heuristic for genome scaffolding. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 294–308. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_22

    Chapter  MATH  Google Scholar 

  5. Mandric, I., Lindsay, J., Măndoiu, I.I., Zelikovsky, A.: Scaffolding algorithms (chap. 5). In: Măndoiu, I., Zelikovsky, A. (eds.) Computational Methods for Next Generation Sequencing Data Analysis. Wiley, Hoboken (2016)

    Google Scholar 

  6. Mardis, E.R.: DNA sequencing technologies: 2006–2016. Nat. Protoc. 12(2), 213–218 (2017)

    Article  Google Scholar 

  7. Miller, J.R., et al.: Hybrid assembly with long and short reads improves discovery of gene family expansions. BMC Genomics 18(1), 541 (2017)

    Article  Google Scholar 

  8. Weller, M., Chateau, A., Dallard, C., Giroudeau, R.: Scaffolding problems revisited: complexity, approximation and fixed parameter tractable algorithms, and some special cases. Algorithmica 80(6), 1771–1803 (2018). https://doi.org/10.1007/s00453-018-0405-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Weller, M., Chateau, A., Giroudeau, R.: Exact approaches for scaffolding. BMC Bioinform. 16(Suppl. 14), S2 (2015)

    Article  Google Scholar 

  10. Weller, M., Chateau, A., Giroudeau, R.: On the complexity of scaffolding problems: from cliques to sparse graphs. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 409–423. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26626-8_30

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Davot .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Algorithms

figure h
figure i
figure j

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davot, T., Chateau, A., Giroudeau, R., Weller, M. (2019). New Polynomial-Time Algorithm Around the Scaffolding Problem. In: Holmes, I., Martín-Vide, C., Vega-Rodríguez, M. (eds) Algorithms for Computational Biology. AlCoB 2019. Lecture Notes in Computer Science(), vol 11488. Springer, Cham. https://doi.org/10.1007/978-3-030-18174-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18174-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18173-4

  • Online ISBN: 978-3-030-18174-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics