Skip to main content

Primary Hypertension

  • Chapter
  • First Online:
Hypertension in Children and Adolescents

Abstract

With the increasing prevalence of childhood obesity worldwide, children and adolescents are more frequently diagnosed with primary/essential hypertension (HTN), mostly related to overweight/obesity, abnormal fat mass distribution (central obesity), increased fructose/salt intake, and decreased physical activity (PA). The consequences of elevated blood pressure (BP) include vascular lesions, left ventricular hypertrophy (LVH), and other target organ damages (TODs), which may be reversible if hypertension is diagnosed and treated early in the development of the disease. As primary hypertension (PH) is considered as a disease of premature vascular aging associated with neuro-, immuno-, and metabolic abnormalities, a multi-targeted non-pharmacological and pharmacological therapy is recommended and attempted, which is however frequently hindered by patients’ noncompliance. As high/untreated BP in childhood has detrimental effects on cardiovascular health in hypertensive children who often become hypertensive adults due to the tracking phenomenon, we advocate that primary prevention of cardiovascular morbidity and mortality starts early in the development of the disease, that is, as soon as hypertension is detected in children and adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flynn J. The changing face of pediatric hypertension in the era of the childhood obesity epidemic. Pediatr Nephrol. 2013;28(7):1059–66.

    Article  PubMed  Google Scholar 

  2. Gupta-Malhotra M, Banker A, Shete S, Hashmi SS, Tyson JE, Barratt MS, et al. Essential hypertension vs. secondary hypertension among children. Am J Hypertens. 2015;28(1):73–80.

    Article  PubMed  Google Scholar 

  3. Falkner B. The childhood role in development of primary hypertension. Am J Hypertens. 2018;150(5):640–8.

    Google Scholar 

  4. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3):e20171904.

    Article  PubMed  Google Scholar 

  5. Xi B, Zhang T, Li S, Harville E, Bazzano L, He J, et al. Can pediatric hypertension criteria be simplified? A prediction analysis of subclinical cardiovascular outcomes from the Bogalusa Heart Study. Hypertension. 2017;69(4):691–6.

    Article  CAS  PubMed  Google Scholar 

  6. Ma C, Kelishadi R, Hong YM, Bovet P, Khadilkar A, Nawarycz T, et al. Performance of eleven simplified methods for the identification of elevated blood pressure in children and adolescents. Hypertension. 2016;68(3):614–20.

    Article  CAS  PubMed  Google Scholar 

  7. Litwin M, Michałkiewicz J, Gackowska L. Primary hypertension in children and adolescents is an immuno-metabolic disease with hemodynamic consequences. Curr Hypertens Rep. 2013;15(4):331–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Litwin M, Feber J, Ruzicka M. Vascular aging: lessons from pediatric hypertension. Can J Cardiol. 2016;32(5):642–9.

    Article  PubMed  Google Scholar 

  9. Litwin M, Feber J, Niemirska A, Michałkiewicz J. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities. Pediatr Nephrol. 2015;31(2):185–94.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Flynn JT. High blood pressure in the young: why should we care? Acta Paediatr. 2018;107(1):14–9.

    Article  PubMed  Google Scholar 

  11. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood: a systematic review and meta-regression analysis. Circulation. 2008;117(25):3171–80.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tirosh A, Afek A, Rudich A, Percik R, Gordon B, Ayalon N, et al. Progression of normotensive adolescents to hypertensive adults: a study of 26,980 teenagers. Hypertension. 2010;56(2):203–9.

    Article  CAS  PubMed  Google Scholar 

  13. Karatzi K, Protogerou AD, Moschonis G, Tsirimiagou C, Androutsos O, Chrousos GP, et al. Prevalence of hypertension and hypertension phenotypes by age and gender among schoolchildren in Greece: The Healthy Growth Study. Atherosclerosis. 2017;259:128–33.

    Article  CAS  PubMed  Google Scholar 

  14. Kim S, Lewis JR, Baur LA, Macaskill P, Craig JC. Obesity and hypertension in Australian young people: results from the Australian Health Survey 2011-2012. Intern Med J. 2017;47(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  15. Martin L, Oepen J, Reinehr T, Wabitsch M, Claussnitzer G, Waldeck E, et al. Ethnicity and cardiovascular risk factors: evaluation of 40,921 normal-weight, overweight or obese children and adolescents living in Central Europe. Int J Obes. 2015;39(1):45–51.

    Article  CAS  Google Scholar 

  16. Kułaga Z, Litwin M, Grajda A, Kułaga K, Gurzkowska B, Góźdź M, et al. Oscillometric blood pressure percentiles for Polish normal-weight school-aged children and adolescents. J Hypertens. 2012;30(10):1942–54.

    Article  PubMed  CAS  Google Scholar 

  17. Rosner B, Cook NR, Daniels S, Falkner B. Childhood blood pressure trends and risk factors for high blood pressure: the NHANES experience 1988-2008. Hypertension. 2013;62(2):247–54.

    Article  CAS  PubMed  Google Scholar 

  18. Kaczmarek M, Stawińska-Witoszyńska B, Krzyżaniak A, Krzywińska-Wiewiorowska M, Siwińska A. Who is at higher risk of hypertension? Socioeconomic status differences in blood pressure among Polish adolescents: a population-based ADOPOLNOR study. Eur J Pediatr. 2015;174(11):1461–73.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Grajda A, Kułaga Z, Gurzkowska B, Wojtyło M, Góźdź M, Litwin M. Preschool children blood pressure percentiles by age and height. J Hum Hypertens. 2017;31(6):400–8.

    Article  CAS  PubMed  Google Scholar 

  20. Lurbe E, Litwin M, Pall D, Seeman T, Stabouli S, Webb NJA, et al. Insights and implications of new blood pressure guidelines in children and adolescents. J Hypertens. 2018;36(7):1456–9.

    Article  CAS  PubMed  Google Scholar 

  21. Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34:1887–920.

    Article  CAS  PubMed  Google Scholar 

  22. Sharma AK, Metzger DL, Rodd CJ. Prevalence and severity of high blood pressure among children based on the 2017 American Academy of Pediatrics Guidelines. JAMA Pediatr. 2018;172(6):557–65.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xi B, Zong X, Kelishadi R, Hong YM, Khadilkar A, Steffen LM, et al. Establishing international blood pressure references among nonoverweight children and adolescents aged 6 to 17 years. Circulation. 2016;133(4):398–408.

    Article  PubMed  Google Scholar 

  24. Flynn JT, Alderman MH. Characteristics of children with primary hypertension seen at a referral center. Pediatr Nephrol. 2005;20(7):961–6.

    Article  PubMed  Google Scholar 

  25. Litwin M, Trelewicz J, Wawer Z, Antoniewicz J, Wierzbicka A, Rajszys P, et al. Intima-media thickness and arterial elasticity in hypertensive children: controlled study. Pediatr Nephrol. 2004;19(7):767–74.

    Article  PubMed  Google Scholar 

  26. Chiolero A, Cachat F, Burnier M, Paccaud F, Bovet P. Prevalence of hypertension in schoolchildren based on repeated measurements and association with overweight. J Hypertens. 2007;25(11):2209–17.

    Article  CAS  PubMed  Google Scholar 

  27. Leiba A, Twig G, Vivante A, Skorecki K, Golan E, Derazne E, et al. Prehypertension among 2.19 million adolescents and future risk for end-stage renal disease. J Hypertens. 2017;35(6):1290–6.

    Article  CAS  PubMed  Google Scholar 

  28. Niemirska A, Litwin M, Antoniewicz J, Jurkiewicz E, Kościesza I, Sladowska J, et al. Fat tissue distribution and metabolic alterations in boys with primary hypertension. Przegl Lek. 2006;63(Suppl 3):49–53.

    PubMed  Google Scholar 

  29. Markus MRP, Stritzke J, Siewert U, Lieb W, Luchner A, Döring A, et al. Variation in body composition determines long-term blood pressure changes in pre-hypertension: the MONICA/KORA (Monitoring Trends and Determinants on Cardiovascular Diseases/Cooperative Research in the Region of Augsburg) cohort study. J Am Coll Cardiol. 2010;56(1):65–76.

    Article  PubMed  Google Scholar 

  30. Lee RM, Dickhout JG, Sandow SL. Vascular structural and functional changes: their association with causality in hypertension: models, remodeling and relevance. Hypertens Res. 2017;40(4):311–23.

    Article  PubMed  Google Scholar 

  31. Falkner B. Monitoring and management of hypertension with obesity in adolescents. Integr Blood Press Control. 2017;10:33–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chirico D, Wade TJ, Cairney J, Klentrou P, O’Leary DD. Evidence of a hyperkinetic state in children with elevated blood pressure. Ann Hum Biol. 2015;42(3):246–52.

    Article  PubMed  Google Scholar 

  33. Sorof JM, Poffenbarger T, Franco K, Bernard L, Portman RJ. Isolated systolic hypertension, obesity, and hyperkinetic hemodynamic states in children. J Pediatr. 2002;140(6):660–6.

    Article  PubMed  Google Scholar 

  34. Niemirska A, Litwin M, Feber J, Jurkiewicz E. Blood pressure rhythmicity and visceral fat in children with hypertension. Hypertension. 2013;62(4):782–8.

    Article  CAS  PubMed  Google Scholar 

  35. Litwin M, Simonetti GD, Niemirska A, Ruzicka M, Wühl E, Schaefer F, et al. Altered cardiovascular rhythmicity in children with white coat and ambulatory hypertension. Pediatr Res. 2010;67(4):419–23.

    Article  PubMed  Google Scholar 

  36. Eisner GM. Hypertension: racial differences. Am J Kidney Dis. 1990;16(4 Suppl 1):35–40.

    CAS  PubMed  Google Scholar 

  37. Calhoun DA, Oparil S. Racial differences in the pathogenesis of hypertension. Am J Med Sci. 1995;310(Suppl 1):S86–90.

    Article  PubMed  Google Scholar 

  38. Litwin M, Sladowska J, Antoniewicz J, Niemirska A, Wierzbicka A, Daszkowska J, et al. Metabolic abnormalities, insulin resistance, and metabolic syndrome in children with primary hypertension. Am J Hypertens. 2007;20(8):875–82.

    Article  CAS  PubMed  Google Scholar 

  39. Litwin M, Michałkiewicz J, Niemirska A, Gackowska L, Gockowska L, Kubiszewska I, et al. Inflammatory activation in children with primary hypertension. Pediatr Nephrol. 2010;25(9):1711–8.

    Article  PubMed  Google Scholar 

  40. Litwin M, Niemirska A, Sladowska-Kozlowska J, Wierzbicka A, Janas R, Wawer ZT, et al. Regression of target organ damage in children and adolescents with primary hypertension. Pediatr Nephrol. 2010;25(12):2489–99.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension. 2003;42(3):247–52.

    Article  CAS  PubMed  Google Scholar 

  42. Kaneko C, Ogura J, Sasaki S, Okamoto K, Kobayashi M, Kuwayama K, et al. Fructose suppresses uric acid excretion to the intestinal lumen as a result of the induction of oxidative stress by NADPH oxidase activation. Biochim Biophys Acta. 2017;1861(3):559–66.

    Article  CAS  Google Scholar 

  43. Rhone ET, Carmody JB. Birthweight and serum uric acid in American adolescents. Pediatr Int. 2017;59(8):948–50.

    Article  CAS  PubMed  Google Scholar 

  44. Orlando A, Cazzaniga E, Giussani M, Palestini P, Genovesi S. Hypertension in children: role of obesity, simple carbohydrates, and uric acid. Front Public Health. 2018;6:129.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Alper AB, Chen W, Yau L, Srinivasan SR, Berenson GS, Hamm LL. Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study. Hypertension. 2005;45(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  46. Koratala A, Singhania G, Alquadan KF, Shimada M, Johnson RJ, Ejaz AA. Serum uric acid exhibits inverse relationship with estimated glomerular filtration rate. Nephron. 2016;134(4):231–7.

    Article  CAS  PubMed  Google Scholar 

  47. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300(8):924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Viazzi F, Rebora P, Giussani M, Orlando A, Stella A, Antolini L, et al. Increased serum uric acid levels blunt the antihypertensive efficacy of lifestyle modifications in children at cardiovascular risk. Hypertension. 2016;67(5):934–40.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Hu J-W, Lv Y-B, Chu C, Wang K-K, Zheng W-L, et al. The role of uric acid in hypertension of adolescents, prehypertension and salt sensitivity of blood pressure. Med Sci Monit. 2017;23:790–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thomas P, Dasgupta I. The role of the kidney and the sympathetic nervous system in hypertension. Pediatr Nephrol. 2015;30(4):549–60.

    Article  PubMed  Google Scholar 

  51. He FJ, MacGregor GA. Importance of salt in determining blood pressure in children: meta-analysis of controlled trials. Hypertension. 2006;48(5):861–9.

    Article  CAS  PubMed  Google Scholar 

  52. Yang Q, Zhang Z, Kuklina EV, Fang J, Ayala C, Hong Y, et al. Sodium intake and blood pressure among US children and adolescents. Pediatrics. Am Acad Pediatr. 2012;130(4):611–9.

    Google Scholar 

  53. Correia-Costa L, Cosme D, Nogueira-Silva L, Morato M, Sousa T, Moura C, et al. Gender and obesity modify the impact of salt intake on blood pressure in children. Pediatr Nephrol. 2016;31(2):279–88.

    Article  PubMed  Google Scholar 

  54. Falkner B, Kushner H, Khalsa DK, Canessa M, Katz S. Sodium sensitivity, growth and family history of hypertension in young blacks. J Hypertens Suppl. 1986;4(5):S381–3.

    CAS  PubMed  Google Scholar 

  55. Simonetti GD, Raio L, Surbek D, Nelle M, Frey FJ, Mohaupt MG. Salt sensitivity of children with low birth weight. Hypertension. 2008;52(4):625–30.

    Article  CAS  PubMed  Google Scholar 

  56. Ruys CA, Rotteveel J, van de Lagemaat M, Lafeber HN, Finken MJJ. Salt sensitivity of blood pressure at age 8 years in children born preterm. J Hum Hypertens. 2018;19(3 Pt 2):112.

    Google Scholar 

  57. Śladowska-Kozłowska J, Litwin M, Niemirska A, Płudowski P, Wierzbicka A, Skorupa E, et al. Oxidative stress in hypertensive children before and after 1 year of antihypertensive therapy. Pediatr Nephrol. 2012;27(10):1943–51.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Solak Y, Afsar B, Vaziri ND, Aslan G, Yalcin CE, Covic A, et al. Hypertension as an autoimmune and inflammatory disease. Hypertens Res. 2016;39(8):567–73.

    Article  CAS  PubMed  Google Scholar 

  59. Pevsner-Fischer M, Blacher E, Tatirovsky E, Ben-Dov IZ, Elinav E. The gut microbiome and hypertension. Curr Opin Nephrol Hypertens. 2017;26(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  60. Gackowska L, Michalkiewicz J, Niemirska A, Helmin-Basa A, Klosowski M, Kubiszewska I, et al. Loss of CD31 receptor in CD4+ and CD8+ T cell subsets in children with primary hypertension is associated with hypertension severity and hypertensive target organ damage. J Hypertens. 2018;36(11):2148–56.

    Article  CAS  PubMed  Google Scholar 

  61. Sorriento D, De Luca N, Trimarco B, Iaccarino G. The antioxidant therapy: new insights in the treatment of hypertension. Front Physiol. 2018;9:258.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ahn S-Y, Gupta C. Genetic programming of hypertension. Front Pediatr. 2017;5:285.

    Article  PubMed  Google Scholar 

  63. Robinson RF, Batisky DL, Hayes JR, Nahata MC, Mahan JD. Significance of heritability in primary and secondary pediatric hypertension. Am J Hypertens. 2005;18(7):917–21.

    Article  PubMed  Google Scholar 

  64. Gupta-Malhotra M, Hashmi SS, Barratt MS, Milewicz DM, Shete S. Familial aggregation of first degree relatives of children with essential hypertension. Blood Press. 2018;26(4):1–8.

    Google Scholar 

  65. Morgado J, Sanches B, Anjos R, Coelho C. Programming of essential hypertension: what pediatric cardiologists need to know. Pediatr Cardiol. 2015;36(7):1327–37.

    Article  PubMed  Google Scholar 

  66. Pickering GW. The role of the kidney in acute and chronic hypertension following renal artery constriction in the rabbit. Clin Sci. 1945;5(3–4):229–47.

    CAS  PubMed  Google Scholar 

  67. Katz SH, Hediger ML, Schall JI, Bowers EJ, et al. Blood pressure, growth and maturation from childhood through adolescence. Mixed longitudinal analyses of the Philadelphia Blood Pressure Project. Hypertension. 1980;2(4 Pt 2):55–69.

    Article  CAS  PubMed  Google Scholar 

  68. Pludowski P, Litwin M, Niemirska A, Jaworski M, Sladowska J, Kryskiewicz E, et al. Accelarated skeletal maturation in children with primary hypertension. Hypertension. 2009;54(6):1234–9.

    Article  CAS  PubMed  Google Scholar 

  69. Sun SS, Schubert CM. Prolonged juvenile States and delay of cardiovascular and metabolic risk factors: the Fels Longitudinal study. J Pediatr. 2009;155(3):S7.e1–6.

    Article  Google Scholar 

  70. Kivimäki M, Lawlor DA, Smith GD, Elovainio M, Jokela M, Keltikangas-Järvinen L, et al. Association of age at menarche with cardiovascular risk factors, vascular structure, and function in adulthood: the Cardiovascular Risk in Young Finns study. Am J Clin Nutr. 2008;87(6):1876–82.

    Article  PubMed  Google Scholar 

  71. Lee HS, Shim YS, Jeong HR, Kwon EB, Hwang JS. The Association between Bone Age Advancement and Insulin Resistance in Prepubertal Obese Children. Exp Clin Endocrinol Diabetes. 2015;123(10):604–7.

    Article  CAS  PubMed  Google Scholar 

  72. Kavey R-EW. Left ventricular hypertrophy in hypertensive children and adolescents: predictors and prevalence. Curr Hypertens Rep. 2013;15(5):453–7.

    Article  CAS  PubMed  Google Scholar 

  73. Stabouli S, Kotsis V, Rizos Z, Toumanidis S, Karagianni C, Constantopoulos A, et al. Left ventricular mass in normotensive, prehypertensive and hypertensive children and adolescents. Pediatr Nephrol. 2009;24(8):1545–51.

    Article  PubMed  Google Scholar 

  74. Urbina EM, Khoury PR, McCoy C, Daniels SR, Kimball TR, Dolan LM. Cardiac and vascular consequences of pre-hypertension in youth. J Clin Hypertens (Greenwich). 2011;13(5):332–42.

    Article  Google Scholar 

  75. Litwin M, Niemirska A, Sladowska J, Antoniewicz J, Daszkowska J, Wierzbicka A, et al. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr Nephrol. 2006;21(6):811–9.

    Article  PubMed  Google Scholar 

  76. Brady TM, Fivush B, Flynn JT, Parekh R. Ability of blood pressure to predict left ventricular hypertrophy in children with primary hypertension. J Pediatr. 2008;152(1):73–8, 78.e1

    Article  PubMed  Google Scholar 

  77. Pruette CS, Fivush BA, Flynn JT, Brady TM. Effects of obesity and race on left ventricular geometry in hypertensive children. Pediatr Nephrol. 2013;28(10):2015–22.

    Article  PubMed  Google Scholar 

  78. Jansen MAC, Uiterwaal CSPM, Visseren FLJ, van der Ent CK, Grobbee DE, Dalmeijer GW. Abdominal fat and blood pressure in healthy young children. J Hypertens. 2016;34(9):1796–803.

    Article  CAS  PubMed  Google Scholar 

  79. Seeman T, Gilík J, Vondrák K, Simková E, Flögelová H, Hladíková M, et al. Regression of left-ventricular hypertrophy in children and adolescents with hypertension during ramipril monotherapy. Am J Hypertens. 2007;20(9):990–6.

    Article  CAS  PubMed  Google Scholar 

  80. Śladowska-Kozłowska J, Litwin M, Niemirska A, Wierzbicka A, Wawer ZT, Janas R. Change in left ventricular geometry during antihypertensive treatment in children with primary hypertension. Pediatr Nephrol. 2011;26(12):2201–9.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Williamson W, Foster C, Reid H, Kelly P, Lewandowski AJ, Boardman H, et al. Will exercise advice be sufficient for treatment of young adults with prehypertension and hypertension? A systematic review and meta-analysis. Hypertension. 2016;68(1):78–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Feber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feber, J., Litwin, M. (2019). Primary Hypertension. In: Lurbe, E., Wühl, E. (eds) Hypertension in Children and Adolescents. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-18167-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18167-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18166-6

  • Online ISBN: 978-3-030-18167-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics