Skip to main content

Constructing Three Completely Independent Spanning Trees in Locally Twisted Cubes

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11458)

Abstract

For the underlying graph G of a network, k spanning trees of G are called completely independent spanning trees (CISTs for short) if they are mutually inner-node-disjoint. It has been known that determining the existence of k CISTs in a graph is an NP-hard problem, even for \(k=2\). Accordingly, researches focused on the problem of constructing multiple CISTs in some famous networks. Pai and Chang [28] proposed a unified approach to recursively construct two CISTs with diameter \(2n-1\) in several n-dimensional hypercube-variant networks for \(n\geqslant 4\), including locally twisted cubes \(LTQ_n\). Later on, they provided a new construction for \(LTQ_n\) and showed that the diameter of two CISTs can be reduced to \(2n-2\) if \(n=4\) (and thus is optimal) and \(2n-3\) if \(n\geqslant 5\). In this paper, we intend to construct more CISTs of \(LTQ_n\). We develop a novel tree searching algorithm, called two-stages tree-searching algorithm, to construct three CISTs of \(LTQ_6\) and show that the three CISTs of the high-dimensional \(LTQ_n\) for \(n\geqslant 7\) can be constructed by recursion. The diameters of three CISTs for \(LTQ_n\) we constructed are 9, 12 and 14 when \(n=6\), and are \(2n-3\), \(2n-1\) and \(2n+1\) when \(n\geqslant 7\).

Keywords

  • Completely independent spanning trees
  • Interconnection networks
  • Locally twisted cubes
  • Diameter

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-18126-0_8
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-18126-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Araki, T.: Dirac’s condition for completely independent spanning trees. J. Graph Theor. 77, 171–179 (2014)

    CrossRef  MathSciNet  Google Scholar 

  2. Chang, H.-Y., Wang, H.-L., Yang, J.-S., Chang, J.-M.: A note on the degree condition of completely independent spanning trees. IEICE Trans. Fundam. E98-A, 2191–2193 (2015)

    CrossRef  Google Scholar 

  3. Chang, J.-M., Pai, K.-J., Yang, J.-S., Chan, H.-C.: Embedding two disjoint multi-dimensional meshes into locally twisted cubes. J. Internet Tech. 16, 541–546 (2015)

    Google Scholar 

  4. Chang, J.-M., Chang, H.-Y., Wang, H.-L., Pai, K.-J., Yang, J.-S.: Completely independent spanning trees on 4-regular chordal rings. IEICE Trans. Fundam. E100-A, 1932–1935 (2017)

    CrossRef  Google Scholar 

  5. Chang, N.-W., Hsieh, S.-Y.: \(\{2,3\}\)-extraconnectivities of hypercube-like networks. J. Comput. Syst. Sci. 79, 669–688 (2013)

    CrossRef  MathSciNet  Google Scholar 

  6. Chang, Y.-H., Yang, J.-S., Hsieh, S.-Y., Chang, J.-M., Wang, Y.-L.: Construction independent spanning trees on locally twisted cubes in parallel. J. Comb. Optim. 33, 956–967 (2017)

    CrossRef  MathSciNet  Google Scholar 

  7. Cheng, B., Wang, D., Fan, J.: Constructing completely independent spanning trees in crossed cubes. Discrete Appl. Math. 219, 100–109 (2017)

    CrossRef  MathSciNet  Google Scholar 

  8. Darties, B., Gastineau, N., Togni, O.: Completely independent spanning trees in some regular graphs. Discrete Appl. Math. 217, 163–174 (2017)

    CrossRef  MathSciNet  Google Scholar 

  9. Fan, G., Hong, Y., Liu, Q.: Ore’s condition for completely independent spanning trees. Discrete Appl. Math. 177, 95–100 (2014)

    CrossRef  MathSciNet  Google Scholar 

  10. Guo, L., Su, G., Lin, W., Chen, J.: Fault tolerance of locally twisted cubes. Appl. Math. Comput. 334, 401–406 (2018)

    MathSciNet  Google Scholar 

  11. Han, Y., Fan, J., Zhang, S., Yang, J., Qian, P.: Embedding meshes into locally twisted cubes. Inform. Sci. 180, 3794–3805 (2010)

    CrossRef  MathSciNet  Google Scholar 

  12. Hasunuma, T.: Completely independent spanning trees in the underlying graph of a line digraph. Discrete Math. 234, 149–157 (2001)

    CrossRef  MathSciNet  Google Scholar 

  13. Hasunuma, T.: Completely independent spanning trees in maximal planar graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS, vol. 2573, pp. 235–245. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36379-3_21

    CrossRef  MATH  Google Scholar 

  14. Hasunuma, T.: Minimum degree conditions and optimal graphs for completely independent spanning trees. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS, vol. 9538, pp. 260–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29516-9_22

    CrossRef  Google Scholar 

  15. Hasunuma, T., Morisaka, C.: Completely independent spanning trees in torus networks. Networks 60, 59–69 (2012)

    CrossRef  MathSciNet  Google Scholar 

  16. Hsieh, S.-Y., Huang, H.-W., Lee, C.-W.: \(\{2,3\}\)-restricted connectivity of locally twisted cubes. Theor. Comput. Sci. 615, 78–90 (2016)

    CrossRef  MathSciNet  Google Scholar 

  17. Hsieh, S.-Y., Tu, C.-J.: Constructing edge-disjoint spanning trees in locally twisted cubes. Theor. Comput. Sci. 410, 926–932 (2009)

    CrossRef  MathSciNet  Google Scholar 

  18. Hsieh, S.-Y., Wu, C.-Y.: Edge-fault-tolerant Hamiltonicity of locally twisted cubes under conditional edge faults. J. Combin. Optim. 19, 16–30 (2010)

    CrossRef  MathSciNet  Google Scholar 

  19. Hong, X., Liu, Q.: Degree condition for completely independent spanning trees. Inform. Process. Lett. 116, 644–648 (2016)

    CrossRef  MathSciNet  Google Scholar 

  20. Lai, C.-J., Chen, J.-C., Tsai, C.-H.: A systematic approach for embedding of Hamiltonian cycles through a prescribed edge in locally twisted cubes. Inform. Sci. 289, 1–7 (2014)

    CrossRef  MathSciNet  Google Scholar 

  21. Li, T.-K., Lai, C.-J., Tsai, C.-H.: A novel algorithm to embed a multi-dimensional torus into a locally twisted cube. Theor. Comput. Sci. 412, 2418–2424 (2011)

    CrossRef  MathSciNet  Google Scholar 

  22. Lin, J.-C., Yang, J.-S., Hsu, C.-C., Chang, J.-M.: Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes. Inform. Process. Lett. 110, 414–419 (2010)

    CrossRef  MathSciNet  Google Scholar 

  23. Liu, Y.-J., Lan, J.K., Chou, W.Y., Chen, C.: Constructing independent spanning trees for locally twisted cubes. Theor. Comput. Sci. 412, 2237–2252 (2011)

    CrossRef  MathSciNet  Google Scholar 

  24. Liu, Z., Fan, J., Zhou, J., Cheng, B., Jia, Z.: Fault-tolerant embedding of complete binary trees in locally twisted cubes. J. Parallel Distrib. Comput. 101, 69–78 (2017)

    CrossRef  Google Scholar 

  25. Ma, M.-J., Xu, J.-M.: Panconnectivity of locally twisted cubes. Appl. Math. Lett. 19, 673–677 (2006)

    CrossRef  MathSciNet  Google Scholar 

  26. Matsushita, M., Otachi, Y., Araki, T.: Completely independent spanning trees in (partial) \(k\)-trees. Discuss. Math. Graph Theor. 5, 427–437 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Moinet, A., Darties, B., Gastineau, N., Baril, J.-L., Togni, O.: Completely independent spanning trees for enhancing the robustness in ad-hoc Networks. In: Proceedings of 10th IEEE International Workshop on Selected Topics in Mobile and Wireless Computing (STWiWob 2017), Rome, Italy, 9–11 October, pp. 63–70 (2017)

    Google Scholar 

  28. Pai, K.-J., Chang, J.-M.: Constructing two completely independent spanning trees in hypercube-variant networks. Theor. Comput. Sci. 652, 28–37 (2016)

    CrossRef  MathSciNet  Google Scholar 

  29. Pai, K.-J., Chang, J.-M.: Improving the diameters of completely independent spanning trees in locally twisted cubes. Inform. Process. Lett. 141, 22–24 (2019)

    CrossRef  MathSciNet  Google Scholar 

  30. Pai, K.-J., Tang, S.-M., Chang, J.-M., Yang, J.-S.: Completely independent spanning trees on complete graphs, complete bipartite graphs and complete tripartite graphs. In: Chang, R.S., Jain, L., Peng, S.L. (eds.) Advances in Intelligent Systems and Applications - Volume 1. Smart Innovation, Systems and Technologies, vol. 20, pp. 107–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35452-6_13

    CrossRef  Google Scholar 

  31. Pai, K.-J., Yang, J.-S., Yao, S.-C., Tang, S.-M., Chang, J.-M.: Completely independent spanning trees on some interconnection networks. IEICE Trans. Inform. Syst. E97-D, 2514–2517 (2014)

    CrossRef  Google Scholar 

  32. Péterfalvi, F.: Two counterexamples on completely independent spanning trees. Discrete Math. 312, 808–810 (2012)

    CrossRef  MathSciNet  Google Scholar 

  33. Ren, Y., Wang, S.: The \(g\)-good-neighbor diagnosability of locally twisted cubes. Theor. Comput. Sci. 697, 91–97 (2017)

    CrossRef  MathSciNet  Google Scholar 

  34. Wei, Y.-L., Xu, M.: The \(g\)-good-neighbor conditional diagnosability of locally twisted cubes. J. Oper. Res. Soc. China 6, 333–347 (2018)

    CrossRef  MathSciNet  Google Scholar 

  35. Xu, X., Huang, Y., Zhang, P., Zhang, S.: Fault-tolerant vertex-pancyclicity of locally twisted cubes. J. Parallel Distrib. Comput. 88, 57–62 (2016)

    CrossRef  Google Scholar 

  36. Xu, X., Zhai, W., Xu, J.-M., Deng, A., Yang, Y.: Fault-tolerant edge-pancyclicity of locally twisted cubes. Inform. Sci. 181, 2268–2277 (2011)

    CrossRef  MathSciNet  Google Scholar 

  37. Yang, H., Yang, X.: A fast diagnosis algorithm for locally twisted cube multiprocessor systems under the MM* model. Comput. Math. Appl. 53, 918–926 (2007)

    CrossRef  MathSciNet  Google Scholar 

  38. Yang, X., Evans, D.J., Megson, G.M.: The locally twisted cubes. Int. J. Comput. Math. 82, 401–413 (2005)

    CrossRef  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was partially supported by MOST grants 107-2221-E-131-011 (K.-J. Pai), 107-2221-E-141-002 (R.-S. Chang) and 107-2221-E-141-001-MY3 (J.-M. Chang), from the Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kung-Jui Pai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pai, KJ., Chang, RS., Chang, JM., Wu, RY. (2019). Constructing Three Completely Independent Spanning Trees in Locally Twisted Cubes. In: Chen, Y., Deng, X., Lu, M. (eds) Frontiers in Algorithmics. FAW 2019. Lecture Notes in Computer Science(), vol 11458. Springer, Cham. https://doi.org/10.1007/978-3-030-18126-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18126-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18125-3

  • Online ISBN: 978-3-030-18126-0

  • eBook Packages: Computer ScienceComputer Science (R0)