On the Use of the Udwadia-Kalaba Equations for the Nonlinear Control of a Generalized Van Der Pol-Duffing Oscillator

Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 76)


In this paper, a new method for controlling nonlinear mechanical systems is proposed. The methodology developed in this work is based on the use of the Udwadia-Kalaba equations in conjunction with the modern techniques of optimal control. The Udwadia-Kalaba equations represent an effective method for solving forward and inverse dynamics problems in the same analytical framework. On the other hand, the optimal control method is used in this work in combination with the inverse dynamic approach based on the Udwadia-Kalaba equations in order to obtain a nonlinear tracking controller. The mechanical system considered in this paper for performing numerical experiments is a nonlinear oscillator which includes in a generalized form the Van der Pol model for the system damping and the Duffing model for the system stiffness. The numerical results presented in this paper demonstrate the effectiveness of the method developed in this investigation.


Nonlinear dynamics Optimal control Udwadia-Kalaba equations Van Der Pol oscillator Duffing oscillator 


  1. 1.
    Villecco, F.: On the evaluation of errors in the virtual design of mechanical systems. Machines 6, 36 (2018)CrossRefGoogle Scholar
  2. 2.
    Sena, P., Attianese, P., Pappalardo, M., Villecco, F.: FIDELITY: fuzzy inferential diagnostic engine for on-line support to physicians. In: Proceedings of the 4th International Conference on the Development of Biomedical Engineering in Vietnam, Ho Chi Minh City, Vietnam, 8–10 January 2012, pp. 396–400 (2012)Google Scholar
  3. 3.
    Ghomshei, M., Villecco, F., Porkhial, S., Pappalardo, M.: Complexity in energy policy: a fuzzy logic methodology. In: Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, 14–16 August 2009, vol. 7, pp. 128–131. IEEE, Los Alamitos (2009)Google Scholar
  4. 4.
    Zhai, Y., Liu, L., Lu, W., Li, Y., Yang, S., Villecco, F.: The application of disturbance observer to propulsion control of sub-mini underwater robot. In: Proceedings of the ICCSA 2010 International Conference on Computational Science and Its Applications, Fukuoka, Japan, 23–26 March 2010, pp. 590–598CrossRefGoogle Scholar
  5. 5.
    Sena, P., D’Amore, M., Pappalardo, M., Pellegrino, A., Fiorentino, A., Villecco, F.: Studying the influence of cognitive load on driver’s performances by a fuzzy analysis of lane keeping in a drive simulation. IFAC Proc. 46, 151–156 (2013)CrossRefGoogle Scholar
  6. 6.
    Ghomshei, M., Villecco, F.: Energy metrics and sustainability. In: Proceedings of the International Conference on Computational Science and Its Applications, Seoul, Korea, 29 June–2 July 2009, pp. 693–698 (2009)CrossRefGoogle Scholar
  7. 7.
    Sena, P., Attianese, P., Carbone, F., Pellegrino, A., Pinto, A., Villecco, F.: A fuzzy model to interpret data of drive performances from patients with sleep deprivation. Comput. Math. Methods Med. 2012, 5 (2012). 868410zbMATHCrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Li, Z., Gao, J., Hong, J., Villecco, F., Li, Y.: A method for designing assembly tolerance networks of mechanical assemblies. Math. Probl. Eng. 2012, 26 (2012). 513958Google Scholar
  9. 9.
    Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19, 475 (2017)CrossRefGoogle Scholar
  10. 10.
    Pellegrino, A., Villecco, F.: Design optimization of a natural gas substation with intensification of the energy cycle. Math. Probl. Eng. 2010, 10 (2010). 294102zbMATHCrossRefGoogle Scholar
  11. 11.
    Barbagallo, R., Sequenzia, G., Cammarata, A., Oliveri, S.M., Fatuzzo, G.: Redesign and multibody simulation of a motorcycle rear suspension with eccentric mechanism. Int. J. Int. Des. Man. 12, 517–524 (2018)CrossRefGoogle Scholar
  12. 12.
    Barbagallo, R., Sequenzia, G., Oliveri, S.M., Cammarata, A.: Dynamics of a high-performance motorcycle by an advanced multibody/control co-simulation. Proc. Inst. Mech. Eng. Part K J. Eng. 230, 207–221 (2016)Google Scholar
  13. 13.
    Oliveri, S.M., Sequenzia, G., Calí, M.: Flexible multibody model of desmodromic timing system. Mech. Based Des. Struct. 37, 15–30 (2009)CrossRefGoogle Scholar
  14. 14.
    Barbagallo, R., Sequenzia, G., Cammarata, A., Oliveri, S.M.: An integrated approach to design an innovative motorcycle rear suspension with eccentric mechanism. Advances on Mechanics, Design Engineering and Manufacturing, pp. 609–619. Springer, Cham (2017)CrossRefGoogle Scholar
  15. 15.
    Calí, M., Oliveri, S.M., Sequenzia, G.: Geometric modeling and modal stress formulation for flexible multi-body dynamic analysis of crankshaft. In: Proceedings of the 25th Conference and Exposition on Structural Dynamics 2007, Orlando, FL, USA, 19–22 February 2007, pp. 1–9 (2007)Google Scholar
  16. 16.
    Cammarata, A.: A novel method to determine position and orientation errors in clearance-affected overconstrained mechanisms. Mech. Mach. Theory 118, 247–264 (2017)CrossRefGoogle Scholar
  17. 17.
    Cammarata, A., Calió, I., Greco, A., Lacagnina, M., Fichera, G.: Dynamic stiffness model of spherical parallel robots. J. Sound Vib. 384, 312–324 (2016)CrossRefGoogle Scholar
  18. 18.
    Cammarata, A., Lacagnina, M., Sequenzia, G.: Alternative elliptic integral solution to the beam deflection equations for the design of compliant mechanisms. Int. J. Interact. Des. Manuf. (IJIDeM), 1–7 (2018).
  19. 19.
    Cammarata, A., Sinatra, R., Maddio, P.D.: A two-step algorithm for the dynamic reduction of flexible mechanisms. In: Mechanism Design for Robotics, pp. 25–32. Springer, Cham (2018)Google Scholar
  20. 20.
    Muscat, M., Cammarata, A., Maddio, P.D., Sinatra, R.: Design and development of a towfish to monitor marine pollution. Euro-Mediterr. J. Environ. Integr. 3, 11 (2018)CrossRefGoogle Scholar
  21. 21.
    Cammarata, A., Sinatra, R.: On the elastostatics of spherical parallel machines with curved links. In: Recent Advances in Mechanism Design for Robotics, pp. 347–356. Springer, Cham (2015)Google Scholar
  22. 22.
    Cammarata, A., Lacagnina, M., Sinatra, R.: Dynamic simulations of an airplane-shaped underwater towed vehicle marine. In: Proceedings of the 5th International Conference on Computational Methods in Marine Engineering, Hamburg, Germany, 29–31 May 2013, pp. 830–841, Code 101673 (2013). ISBN 978-849414074-7Google Scholar
  23. 23.
    Cammarata, A., Angeles, J., Sinatra, R.: Kinetostatic and inertial conditioning of the McGill Schonflies-motion generator. Adv. Mech. Eng. 2, 186203 (2010)CrossRefGoogle Scholar
  24. 24.
    Cammarata, A.: Unified formulation for the stiffness analysis of spatial mechanisms. Mech. Mach. Theory 105, 272–284 (2016)CrossRefGoogle Scholar
  25. 25.
    Cammarata, A.: Optimized design of a large-workspace 2-DOF parallel robot for solar tracking systems. Mech. Mach. Theory 83, 175–186 (2015)CrossRefGoogle Scholar
  26. 26.
    Kirk, D.E.: Optimal Control Theory: An Introduction. Springer, New York (1970)Google Scholar
  27. 27.
    Lewis, F.L., Vrabie, D., Syrmos, V.L.: Optimal Control. Wiley, Chichester (2012)zbMATHCrossRefGoogle Scholar
  28. 28.
    Khalil, H.K.: Nonlinear Control. Pearson, New York (2015)zbMATHGoogle Scholar
  29. 29.
    Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  30. 30.
    Udwadia, F.E., Weber, H.I., Leitmann, G.: Dynamical Systems and Control. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar
  31. 31.
    Udwadia, F.E.: Equations of motion for constrained multibody systems and their control. J. Optim. Theory Appl. 127, 627–638 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Udwadia, F.E.: Inverse problem of Lagrangian mechanics for classically damped linear multi-degrees-of-freedom systems. J. Appl. Mech. 83(10), 104501 (2016)CrossRefGoogle Scholar
  33. 33.
    Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 464, 2341–2363 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. Math. Phys. Sci. 1992, 407–410 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non-Linear Mech. 37(6), 1079–1090 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Udwadia, F.E., Koganti, P.B.: Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. Nonlinear Dyn. 82(1–2), 547–562 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Koganti, P.B., Udwadia, F.E.: Unified approach to modeling and control of rigid multibody systems. J. Guidance Control Dyn. 2016, 2683–2698 (2016)CrossRefGoogle Scholar
  38. 38.
    Koganti, P.B., Udwadia, F.E.: Dynamics and precision control of tumbling multibody systems. J. Guid. Control Dyn. 40(3), 584–602 (2017)CrossRefGoogle Scholar
  39. 39.
    Koganti, P.B., Udwadia, F.E.: Dynamics and precision control of uncertain tumbling multibody systems. J. Guidance Control Dyn. 40(5), 1176–1190 (2017)CrossRefGoogle Scholar
  40. 40.
    Schutte, A., Udwadia, F.: New approach to the modeling of complex multibody dynamical systems. J. Appl. Mech. 78, 021018 (2011)CrossRefGoogle Scholar
  41. 41.
    Cho, H., Wanichanon, T., Udwadia, F.E.: Continuous sliding mode controllers for multi-input multi-output systems. Nonlinear Dyn. 94(4), 2727–2747 (2018)CrossRefGoogle Scholar
  42. 42.
    Mylapilli, H., Udwadia, F.E.: Control of three-dimensional incompressible hyperelastic beams. Nonlinear Dyn. 90(1), 115–135 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Wanichanon, T., Cho, H., Udwadia, F.: Satellite formation-keeping using the fundamental equation in the presence of uncertainties in the system. In: AIAA SPACE 2011 Conference and Exposition 2011, vol. 7210 (2011)Google Scholar
  44. 44.
    Wanichanon, T., Udwadia, F.E., Cho, H.: Formation-keeping of uncertain satellites using nonlinear damping control. J. Res. Appl. Mech. Eng. 2(1), 20–33 (2014)Google Scholar
  45. 45.
    Wanichanon, T., Udwadia, F.E.: Nonlinear damping control for uncertain nonlinear multi-body mechanical systems. J. Res. Appl. Mech. Eng. 2(1), 7–19 (2014)Google Scholar
  46. 46.
    Udwadia, F.E., Phohomsiri, P.: Generalized LM-inverse of a matrix augmented by a column vector. Appl. Math. Comput. 190(2), 999–1006 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Udwadia, F.E., Phohomsiri, P.: Recursive formulas for the generalized LM-inverse of a matrix. J. Optim. Theory Appl. 131(1), 1–16 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 462, No. 2071, pp. 2097–2117, July 2006MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Udwadia, F.E., Phohomsiri, P.: Recursive determination of the generalized Moore-Penrose M-inverse of a matrix. J. Optim. Theory Appl. 127(3), 639–663 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Udwadia, F.E., Kalaba, R.E., Phohomsiri, P.: Mechanical systems with nonideal constraints: explicit equations without the use of generalized inverses. J. Appl. Mech. 71(5), 615–621 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Heydari, A., Balakrishnan, S.N.: Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics. IEEE Trans. Neural Networks Learn. Syst. 24(1), 145–157 (2013)CrossRefGoogle Scholar
  52. 52.
    Lin, Q., Loxton, R., Teo, K.L.: The control parameterization method for nonlinear optimal control: a survey. J. Ind. Manag. Optim. 10(1), 275–309 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Dierks, T., Jagannathan, S.: Optimal control of affine nonlinear continuous-time systems. In: IEEE American Control Conference (ACC), pp. 1568–1573, June 2010Google Scholar
  54. 54.
    Xin, M., Pan, H.: Nonlinear optimal control of spacecraft approaching a tumbling target. Aerosp. Sci. Technol. 15(2), 79–89 (2011)CrossRefGoogle Scholar
  55. 55.
    Liu, D., Wei, Q.: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems. IEEE Trans. Cybern. 43(2), 779–789 (2013)CrossRefGoogle Scholar
  56. 56.
    Wang, D., Liu, D., Wei, Q., Zhao, D., Jin, N.: Optimal control of unknown non affine nonlinear discrete-time systems based on adaptive dynamic programming. Automatica 48(8), 1825–1832 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Bryson, A.E.: Applied optimal control: optimization, estimation and control. Routledge (2018)Google Scholar
  58. 58.
    Bryson, A., Ho, Y.C.: Applied Optimal Control: Optimization, Estimation, and Control (Revised Edition). Taylor and Francis, Pennsylvania (1975)Google Scholar
  59. 59.
    Bryson, A.E.: Optimal control-1950 to 1985. IEEE Control Syst. 16(3), 26–33 (1996)CrossRefGoogle Scholar
  60. 60.
    Weinreb, A., Bryson, A.: Optimal control of systems with hard control bounds. IEEE Trans. Autom. Control 30(11), 1135–1138 (1985)zbMATHCrossRefGoogle Scholar
  61. 61.
    De Simone, M.C., Rivera, Z.B., Guida, D.: Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines 6, 18 (2018)CrossRefGoogle Scholar
  62. 62.
    De Simone, M.C., Russo, S., Rivera, Z.B., Guida, D.: Multibody model of a UAV in presence of wind fields. In: Proceedings of the 2017 International Conference on Control, Artificial Intelligence, Robotics and Optimization (ICCAIRO), Prague, Czech Republic, 20–22 May 2017, pp. 83–88 (2017)Google Scholar
  63. 63.
    De Simone, M.C., Guida, D.: Identification and control of a unmanned ground vehicle by using arduino. UPB Sci. Bull. Ser. D 80, 141–154 (2018)Google Scholar
  64. 64.
    De Simone, M.C., Guida, D.: On the development of a low-cost device for retrofitting tracked vehicles for autonomous navigation. In: Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, Salerno, Italy, 4–7 September 2017, vol. 4, pp. 71–82 (2017)Google Scholar
  65. 65.
    De Simone, M.C., Guida, D.: Control design for an under-actuated UAV model. FME Trans. 46, 443–452 (2018)CrossRefGoogle Scholar
  66. 66.
    De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6, 8 (2018)CrossRefGoogle Scholar
  67. 67.
    De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46, 93–100 (2018)CrossRefGoogle Scholar
  68. 68.
    De Simone, M.C., Guida, D.: Object Recognition by Using Neural Networks For Robotics Precision Agriculture Application. Eng. Lett. (2019, in press)Google Scholar
  69. 69.
    Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45, 578–584 (2017)CrossRefGoogle Scholar
  70. 70.
    Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using Arduino. FME Trans. 45, 565–571 (2017)CrossRefGoogle Scholar
  71. 71.
    Ruggiero, A., Affatato, S., Merola, M., De Simone, M.C.: FEM analysis of metal on UHMWPE total hip prosthesis during normal walking cycle. In: Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, Salerno, Italy, 4–7 September 2017, vol. 2, pp. 1885–1892 (2017)Google Scholar
  72. 72.
    Ruggiero, A., De Simone, M.C., Russo, D., Guida, D.: Sound pressure measurement of orchestral instruments in the concert hall of a public school. Int. J. Circuits Syst. Signal Process 10, 75–81 (2016)Google Scholar
  73. 73.
    De Simone, M.C., Guida, D.: Dry friction influence on structure dynamics. In: Proceedings of the COMPDYN 2015 - 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete Island, Greece, pp. 4483–4491 (2015)Google Scholar
  74. 74.
    Iannone, V., De Simone, M.C., Modelling of a DC gear motor for feed-forward control law design for unmanned ground vehicles. Actuators (2019, Submitted)Google Scholar
  75. 75.
    Rivera, Z.B., De Simone, M.C., Guida, D.: Modelling of mobile robots in ROS-based environments. Robotics (2019, Submitted)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly

Personalised recommendations